Conditional Logistic Regression

PubH 7450

©Wei Pan

Email: weip@biostat.umn.edu

Http: www.biostat.umn.edu/~weip

§1 Matched Case-Control Study

- 1-M match: 1 case is matched with M controls;
 matching variable: potential confounder ⇒ ...;
 M ≥ 1: to improve efficiency;
 there may be ≥ 1 risk factor/covariate to be investigated.
- More generally, $n_i M_i$ match in set i.
- Example: Low birth weight data.

 Ref: Le, CT (1998). Applied Categorical Data Analysis.

 Example 5.9.
 - 1-3 matching; n = 15 matched sets; matching variable: mother's age;
 - 4 covariates: mother's body weights (in pounds); hypertension status; smoking status; uterine irritability.

TABLE 5.2. Low Birthweight Data

ABLE 5.2. Low Birthweight Data					
Matched		A 4 . U	I banantan da	Omalija s	II luuitahilit.
Set	Case	MotherWeight	Hypertension	Smoking	<i>U</i> -Irritability
1	1	130	0	0	0
	0	112	0	0	0
	0	135	1	0	0
	0	270	0	0	0
2	1	110	0	0	0
	0	103	0	0	0
	0	113	. 0	0	0
	0	142	0	1	0
3	1	110	1	0	0
	0	100	1	0	0
	0	120	1	0	0
	0	229	0	0	0
4	1	102	0	0	0
	0	182	0	0	1
	0	150	0	0	0
	0	189	0	0	0
5	1	125	0	0	1
	0	120	0	0	1
	0	169	0	0	1
	0	158	0	0	0
6	1	200	0	0	1
	0	108	1	0	1
	0	185	1	0	0
	0	110	1	0	1
7	1	130	1	0	0
	0	95	0 2-	1 1	0
	0	120	0	1	0
	0	169	0	0	0 *
8	1	97	0	0	1
	0	128	0	0	0
	0	115	1	0	0
	0	190	0	0	0
9	1	132	0	1	0
	0	90	1	0	0

§2 CLR

- For simplicity, first consider $1-m_i$ matching for set i.
- Notation: for matched set i = 1,...n, case: x_i , $y_i = 1$; controls: x_{ij} , $y_{ij} = 0$, $j = 1,...,m_i$;
- LR model:

$$\operatorname{Logit} Pr(Y = 1 | X, \text{ set } i) = \alpha_i + X'\beta.$$

note **matched set-dependent** intercepts; why? interpretation of β :

- How to infer β ?
- Use the standard likelihood $L(\alpha_1, ..., \alpha_n, \beta)$? How? Why or why not?

• Use conditional likelihood:

$$L_c = \prod_{i=1}^{n} L_i = \prod_{i=1}^{n} \frac{\exp(x_i'\beta)}{\exp(x_i'\beta) + \sum_{j=1}^{m_i} \exp(x_{ij}'\beta)}.$$

 L_i looks like ...

• Derivation:

$$p_i = Pr(Y_i = 1 | x_i, \text{ set } i) = \frac{\exp(\alpha_i + x_i'\beta)}{1 + \exp(\alpha_i + x_i'\beta)},$$

$$1 - p_i = ...$$

similarly, $p_{ij} = Pr(Y_{ij} = 1 | x_{ij}, \text{ set } i) = ...$
 $1 - p_{ij} = ...$

• Two key probabilities:

A = \Pr (the case has disease and controls do not in set i)

$$= p_i \prod_{j=1}^{m_i} (1 - p_{ij}) = \frac{\exp(\alpha_i + x_i'\beta)}{1 + \exp(\alpha_i + x_i'\beta)} \prod_{j=1}^{m_i} \frac{1}{1 + \exp(\alpha_i + x_{ij}'\beta)}$$

B=Pr(only one subject has disease in set i)

$$= p_i \prod_{j=1}^{m_i} (1 - p_{ij}) + (1 - p_i) p_{i1} (1 - p_{i2}) \dots (1 - p_{im_i}) + \dots = \dots$$

$$L_i$$
 = Pr(the case has disease|only one has disease in set i)
= $A/B = ...$

• More generally,

$$L_{i} = \frac{\prod_{j \in \text{Cases}} \exp(x'_{ij}\beta)}{\sum_{S \in R(n_{i}, m_{i})} \prod_{k \in S} \exp(x'_{ik}\beta)},$$

where $R(n_i, m_i)$ is the set of all partitions of the n_i - m_i matched set into two parts with the first containing n_i subjects and the second m_i subjects.

 L_i looks like ...

• How to operate on $L \Longrightarrow ...$? use PL, e.g. in SAS Proc Phreg.

- How? Convert the CLR into a PH regression problem:
 - 1) Create a dummy time variables such that its value for any case is always smaller than that of any control;
 - 2) For any case, its dummy time is for an event; for any control it is for an censoring;
 - 3) Stratified by set i; see §9.3 to be discussed;
 - 4) Fit a PHM.
- Example: Low birth weights data.

§3 Application to clustered binary data

- Multiple observations from the same cluster may be correlated. Multiple members from the same family from a familial study. Study on twins; study on two eyes, kidneys,...; Multiple observations on the same subject in a longitudinal study.
- A matched set is a cluster.
- Notation: for subject j in cluster i, we have a binary response Y_{ij} , and covariates X_{ij} .
- Logistic regression model:

$$\operatorname{Logit} Pr(Y_{ij} = 1 | X_{ij}) = \alpha_i + X'_{ij}\beta.$$

Why α_i ?

Similar to a random-effects model?

Different from a random-effects model?

