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§8.1 Introduction

• So far, assume event times Xi
iid
∼ S (or H or h).

Observe n iid (Ti, δi)
′s =⇒ Ŝ, Ĥ, ĥ, ....

• In practice, we observe some covariates (or predictors or

independent or explanatory variables) Zi, and the distribution

of Xi possibly depends on Zi.

E.g., Xi: survival time; Zi: age, gender, smoking status,...

• Goal: model Xi ∼ Zi, a problem of ...

Then can explain possible effects of Zi on survival...

• Some commonly used models; see also §2.6.

1. Accelerated Failure Time (AFT) model (Chapter 12 for

parametric approaches):

– An analog of linear models

– Because Xi is non-negative =⇒ Yi = log(Xi).
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– AFT model:

Yi = β0 + Z ′
iβ + ǫi,

ǫi
iid
∼ F0 with mean 0.

– Model interpretation: as before...

– Model implication: suppose S0(x) is the survival function

of exp(β0 + ǫi); i.e., S0(x) = Pr(exp(β0 + ǫi) > x).

S(x|Zi) = Pr(Xi > x|Zi) = Pr(Yi > log x|Zi)

= Pr(Yi − Z ′
iβ > log x − Z ′

iβ|Zi)

= Pr(exp(β0 + ǫi) > exp(log x − Z ′
iβ)|Zi)

= S0[x exp(−Z ′
iβ)]

– The effect of Zi is to change the time scale by a factor of

exp(−Z ′
iβ): if Z ′

iβ < 0, then the failure time is

accelerated!
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– By definition,

h(x|Z) =
f(x|Z)

S(x|Z)
= h0[x exp(−Z ′β)] exp(−Z ′β).

– With censoring, AFT model is easy to fit with a

parametric assumption on S0–contents of Chapter 12;

o/w, harder, no standard software?

2. Proportion hazards model (PHM): by Cox (1972); by far

the most popular.

– PHM:

h(x|Z) = h0(x) exp(Z ′β),

though exp(.) can be any non-negative function.

No error term?

– Model implication:

h(x|Z1)

h(x|Z2)
=

h0(x) exp(Z ′
1β)

h0(x) exp(Z ′
2β)

= const
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—-PH!

S(x|Z) = exp(−
∫ x

0
h(t|Z)dt) =

exp(−
∫ x

0
h0(t) exp(Z ′β)dt) = [S0(x)]exp(Z′β) =⇒

log[− log S(x|Z)] = Z ′β + log[− log S0(x)], can be used to

check the PH assumption.

3. Additive hazard rate model: an alternative to PHM

(Chapter 10)

h(x|Z) = h0(x) + Z ′β.

Some constraints have to be put on Z ′β so that h(x|Z) is

non-negative. no standard software?

4. Proportional Odds Model (POM):

LogitS(x|Z) = log Odds(x|Z) = log
S(x|Z)

1 − S(x|Z)
= G(x)+Z ′β.

Note: different from the POM for ordinal outcomes.
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log Odds(x|Z1)
Odds(x|Z2)

= (Z1 − Z2)
′β = const!

5. Linear Transformation Models:

g(X) = Z ′β + ǫ.

A general class of models!

Case I: g = log =⇒ AFT;

Case II: g unknown, ǫ ∼ extreme value distribution =⇒

PHM;

Case III: g unknown, ǫ ∼ (standard) logistic distribution

=⇒ POM.
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§8.2 Model interpretation

• I). A binary covariate, e.g. gender.

Create a dummy variable; how?–why does it even matter?

• i) use a reference group: Z = 1 for M; = 0 for F.

PHM: h(x|Z) = h0(x) exp(Zβ).

Z = 0 =⇒ h(x|F ) = h0(x);

Z = 1 =⇒ h(x|M) = h0(x) exp(β) =⇒

Relative risk (RR, or HR) =
h(x|M)

h(x|F )
= exp(β),

or, β = log RR (M vs F).

Q: is fitting this PHM equivalent to fitting two K-M curves for

the two groups?

Note:

β = 0 <==> h(x|F ) = h(x|M) <==> S(x|F ) = S(x|M);

hence, can be used for two-sample comparison!
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Q: how is it related to previous K-sample comparisons?

• ii) “sum-to-0” coding: Z = 1 for M; = −1 for F.

RR = h(x|M)
h(x|F ) = h0(x) exp(β)

h0(x) exp(−β) = exp(2β) =⇒ β = 1
2RR (M vs F).

• II. A categorical variable with K categories: C1,..., CK .

• i) Choose CK (or any other one) as the ref group:

Zj = 1 for Cj ; Zj = 0 o/w; j = 1, ..., K − 1.

PHM: h(x|Z) = h0(x) exp(
∑K−1

k=1 Zjβj).

h(x|Cj) = h0(x) exp(βj) for any j = 1, ..., K − 1.

h(x|CK) = h0(x) =⇒

βj = log RR (Cj vs CK).

Q: log RR (Cj vs Cm)= ... for 1 ≤ j 6= m ≤ K − 1?

• ii) Sum-to-0 coding,...

• III. Continuous variables, e.g. age

PHM: h(x|Z) = h0(x) exp(Age · β1 +
∑K

j=1 Zjβj).
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h(x|Age=a+1,Z2,...,ZK)
h(x|Age=a,Z2,...,ZK) = exp(β1);

β1 = log RR with one-unit increase of Age after adjusting for

other variables Z2,...,ZK !

Assumption: Z2,...,ZK can be fixed while Age is changed;

always possible?

Q: What is β1 in PHM h(x|Age) = h0(x) exp(Age · β1)?

Q: How is this related to confounding?

• IV. Interactions:

Consider a simple case with two binary variables: 1) gender,

Z1 = 1 for F, = 0 for M; 2) race, Z2 = 1 for B, = 0 for Others.

Z3 = Z1 ∗ Z2.

PHM: h(x|Z) = h0(x) exp(
∑3

j=1 Zjβj).
h(x|F,Others)
h(x|M,Others) = h0(x) exp(β1)

h0(x) = exp(β1);
h(x|F,B)
h(x|M,B) = h0(x) exp(β1+β2+β3)

h0(x) exp(0+β2+0) = exp(β1 + β3);

Q: how to relate this to effect-modification? Consider Race as a

stratifier...

9



Note: the above model is equivalent to coding for the 4 groups:

FB, MB, FO, MO.

• Finally, note that there is no intercept term in any PHM;

should we add one? why or why not?
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§8.3 Partial likelihood

• Given: 1) (Ti, δi, Zi), i = 1, ..., n;

2) PHM: h(x|Z) = h0(x) exp(Z ′β).

• Goal: to infer β semi-parametrically. How?

• Approach 1: write down the nonparametric likelihood for

(h0, β), then get NPMLE ĥ0, β̂,...

Downside: complicated because NPL depends on

infinite-dimensional h0, while most often, interest is in β, not

h0.

• Approach 2: use partial likelihood (PL) proposed by Cox

(1972).

h0 is treated as a nuisance parameter and eliminated from the

PL.

PL is not a standard likelihood, but it has (almost) all nice

properties of a standard likelihood, e.g., asymptotics.
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• What is PL?

• Notation:

1) Suppose that distinct event times are t1 < t2 < ... < tD and

no tied event times.

2) R(ti): risk set at ti; subjects who are still in the study at t−i .

3) Z(i): covariate (vector) of the subject who has event at ti.

• PL

L(β) =

D
∏

i=1

exp(Z ′
(i)β)

∑

j∈R(ti)
exp(Z ′

jβ)
.

• The maximum partial likelihood estimator (MPLE)

β̂ = argmaxβ log L(β),

which solves the score equation U(β) = (U1, ..., Up)
′ = 0 with

Uk =
∂ log L(β)

∂βk

=
D
∑

i=1

(

Z(i)k −

∑

j∈R(ti)
Zjk exp(Z ′

jβ)
∑

j∈R(ti)
exp(Z ′

jβ)

)

.
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Information matrix is I = (Igh)p×p with

Igh = −
∂2 log L(β)

∂βg∂βh

= ...

see p.254.

• Then we use the usual Wald test, score test and LRT to test

H0: β = β0.

The usual likelihood theory applies!

• Example 8.1.

Data: (Ti, δi, Zi), i = 1, ..., n; no tied event times;

Zi is binary: Zi = 1 for group 1; Zi = 0 for group 0.

PHM: h(x|Z) = h0(x) exp(Zβ).

log L(β) =
D
∑

i=1







Z(i)β − log[
∑

j∈R(ti)

exp(Zjβ)]






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= d1β −

D
∑

i=1

log(y0i + y1ie
β)

where d1 =
∑D

i=1 Z(i) =# events in group 1;

y0i =# subjects from group 0 at risk at t−i ;

y1i =# subjects from group 1 at risk at t−i .

U(β) = d1 −
∑D

i=1
y1ie

β

y0i+y1ieβ .

I(β) =
∑D

i=1

(

y1ie
β

y0i+y1ieβ − (y1ie
β)2

(y0i+y1ieβ)2

)

.

To test H0: β = 0, apply the score test:

U(0) = d1 −
∑D

i=1
y1i

y0i+y1i
= d1 −

∑D
i=1

y1i

yi
∗ d∗

i since d∗
i = ...

I(0) =
∑D

i=1
y0iy1i

y2
i

,

χ2
S = U(0)2

I(0) =...... statistic!

• SAS example.

• Some justifications for PL: L =
∏D

i=1 Li
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• 1) Interpretation of Li:

Li =
exp(Z ′

(i)β)
∑

j∈R(ti)
exp(Z ′

jβ)

= Pr(subject (i) has event at ti|one event at ti).

Why?

Pr((i) has event in (ti, ti + ∆t)|an event in (ti, ti + ∆t))

=
h(ti|Z(i))∆t

∏

m∈R(ti),m6=(i)[1 − h(ti|Zm)∆t]
∑

j∈R(ti)
h(ti|Zj)∆t

∏

m∈R(ti),m6=j [1 − h(ti|Zm)∆t]

∆t→0
−→

h(ti|Z(i))
∑

j∈R(ti)
h(ti|Zj)

PHM
= Li
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why called “partial” likelihood? compared to a full likelihood.

• 2) PL is a profile likelihood from the full likelihood Lf (β, h0):

L(β) = Lf (β, ĥ0(β)).

for details, see p.258.

Lf (β, h0) =
n
∏

j=1

f(Tj |Zj)
δj S(Tj |Zj)

1−δj

=
n
∏

j=1

h(Tj |Zj)
δjS(Tj |Zj)

PHM
=

n
∏

j=1

[h0(Tj) exp(Z ′
jβ)]δj exp[−H0(Tj) exp(Z ′

jβ)].

• 3) PL is a marginal likelihood for observed event ranks; see

p.127 of Miller (1981).
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§8.4 PL with tied event times

• Problem: previous derivation of PL is based on the assumption

that there are no tied event times. In practice, because of

rounding, it can happen. There are several ways to handle tied

event times, giving different PLs.

• Notation:

Di: subjects having event at ti; di = |Di|.

Ri: risk set at ti;

Qi: set of all size-di subsets of Ri ;

• 1) Brelsow’s approximation:

L(β) =
∏D

i=1

∏di

k=1
exp(Z′

kβ)
∑

j∈Ri
exp(Z′

j
β)

.

• 2) Efron’s approximation:

L(β) =
∏D

i=1

∏di

k=1
exp(Z′

kβ)
∑

j∈Ri
exp(Z′

j
β)− k−1

di

∑

m∈Di
exp(Z′

mβ)
.

• 3) Cox’s approximation based on a discrete model:
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L(β) =
∏D

i=1

∏

di

k=1
exp(Z′

kβ)
∑

S∈Qi

∏

m∈S
exp(Z′

mβ)
.

4) Exact: Li is the average of the partial likelihoods

corrsponding to all di! possible permutations of Di; in SAS

• An example: Di = {1, 2};

Li,1 is PL for that subject 1 a had an event first, then subject 2;

Li,1 =
exp(Z′

1β)
∑

j∈Ri
exp(Z′

j
β)

exp(Z′
2β)

∑

j∈(Ri−{1})
exp(Z′

j
β)

.

Li,2 is PL for that subject 2 a had an event first, then subject 1;

Li,2 =
exp(Z′

2β)
∑

j∈Ri
exp(Z′

j
β)

exp(Z′
1β)

∑

j∈(Ri−{2})
exp(Z′

j
β)

.

Li = (Li,1 + Li,2)/2.

• Example 8.4

• PHM may not hold. In Example 8.4, how to check the PH

assumption?

log H(x|Z = 1) − log H(x|Z = 0) = ... = β =const.
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Then apply ...

Fig 8.1.
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§8.5 Local tests

• PHM: h(t|Z) = h0(t) exp(Z ′β).

• Partition β = (β′
1, β

′
2)

′

• Global test: H0: β = β0

• Local test: H0: β1 = β10

More generally, H0: Cβ1 = b0 with a specified matrix C and

vector b0.

• Example: H0: β1 = β2 = β3. =⇒ β1 = β2 and β2 = β3

=⇒ Cβ = (0, 0)′ with C = ...

• Score test: least demanding in terms of computation; but least

popular in computer packages.

Read Example 8.2 and formula (8.5.3) on p.264.

• LRT: easiest to apply with a computer package.

i) fit a full model =⇒ −2 log LF ;
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ii) fit a reduced model under H0 =⇒ −2 log LR;

iii) 2 log LF − 2 log LR
a.
∼ χ2

p1
under H0, where p1= difference of

# parameters in H0 and H1, usually p1 = dim(β1), but NOT

always.

• Wald test: most commonly used.

To test H0: β1 = β10,

i) fit a full model =⇒ β̂1, Cov(β̂1);

ii)χ2
W = (β̂1 − β10)

′Cov(β̂1)
−1(β̂1 − β10)

a.
∼ χ2

p1
under H0.

To test H0: Cβ1 = b0,

χ2
W = (Cβ̂1 − b0)

′[CCov(β̂1)C
′]−1(Cβ̂1 − b0)

a.
∼ χ2

p1
under H0,

with p1 = rank(C).

• Example 8.2: SAS

• Example 8.2: R
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§8.8 Estimation of the survival function

• Main idea: PL =⇒ β̂ =⇒ Ĥ0(t), Ŝ0(t) =⇒ Ŝ(t|Z) for any Z.

• Use the same notation with ti, di and R(ti) as before; Brelsow

estimator

Ĥ0(t) =
∑

ti≤t

di
∑

j∈R(ti)
exp(Z ′

j β̂)
.

Notes: 1) reduces to the N-A estimator if β̂ = 0; 2) derived

based on a profile likelihood argument.

• Baseline survival

Ŝ0(t) = exp(−Ĥ0(t)).

• For any Z,

Ŝ(t|Z) = Ŝ0(t)
exp(Z′β̂).

• Example 8.2: SAS
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• Q: for a 2-sample problem, does applying the N-A estimator to

each group give the same result as using a PHM?
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§8.7 Model building

• Practice: model selection=⇒model checking =⇒...

Here (and often), model selection is mainly on variable

selection.

• Why do model selection?

try to find an approximately correct model.

• What happens if not?

• A too small model:

Consequence:

True: E(Y |X1, X2) = b0 + b1X1 + b2X2

Working: E(Y |X1) = β0 + β1X1

Consequence: E(β̂1) 6= b1 unless X1 and X2 are ... (i.e. when

X2 is NOT a ...)

For a non-linear model (e.g. logistic regression or PHM),

E(β̂1) 6= b1 always! one reason: interpretation of β1 and b1 are
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...

• A too large model:

True: E(Y |X1, X2) = b0 + b1X1

Working: E(Y |X1, X2) = β0 + β1X1 + β2X2

Note: the working model is not really wrong: it covers the true

model as a special case with β2 = 0. Does it mean that a larger

model is always better?

Consequences: 1) E(β̂1) = b1 , unbiased!

2) V ar(β̂1) ≥ V ar(b̂1)

3) MSE(β̂1) ≥ MSE(b̂1)

MSE(β̂1) = E[(β̂1 −β1)
2] = E[(β̂1 −E(β̂1))

2]+ [E(β̂1)−β1]
2 =

bias2 + Variance. —-celebrated bias-variance trade-off!

• For a small/finite sample size, is it possible to have

MSE(β̂1) < MSE(b̂1)?

• In biomedical studies, because one (perhaps incorrectly) cares

more about bias than variance, use a slightly smaller or larger
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model?

• Variable selection:

• 1) Sequential: forward, backward, stepwise

Advantage: simple

Disadvantage: because of its greedy nature, may miss the best

model.

• 2) Best subset: computationally intensive.

Give top-ranked models for each model size.

How to compare two nested models? – H.T.

How to compare two non-nested models?

AIC = −2 log L(β̂) + 2p

BIC = −2 log L(β̂) + log(n)p

p = dim(β), β̂ is MLE.

Note, each criterion = “goodness-of-fit” + “penalty on model

complexity”. —strike a balance!
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Why not choose a model with the highest GOF?

• Comparison b/w AIC and BIC:

BIC tends to select a smaller model, because ...

BIC is consistent if the true model is fixed.

If more concerned with bias (e.g. caused by confounders), go

with AIC.

AIC/BIC: a difference less than 2 is not significant.

• Example: SAS
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§Some questions

• Is there the correct model? Why or why not?

true: E(Y |X1, X2) = β0 + β1X1 + β2X2

=⇒

• More practically,

George Box’s famous quote: “all models are wrong, but some

are useful.”

Box and Draper, Empirical Model-Building and Response

Surfaces (1987), p. 74: Remember that all models are wrong;

the practical question is how wrong do they have to be to not

be useful.

A key: keep in mind what is your question!

Example 1: shoe size ∼ test score;

Example 2: trt → blood pressure → heart disease;

28



• Why do model selection criteria (e.g. AIC vs BIC vs p-values)

sometimes select different models?

A short answer:different criteria are different!

A key: nothing can replace knowledge!

• Can a wrong model beat a correct model (if exists)?

Prediction: bias-variance trade-off!

Inference: a surprise!
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