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Abstract

Constructing a con$dence interval for a binomial proportion or the di&erence of two propor-
tions is a routine exercise in daily data analysis. The best-known method is the Wald interval
based on the asymptotic normal approximation to the distribution of the observed sample propor-
tion, though it is known to have a bad performance for small to medium sample sizes. Recently,
Agresti and his co-workers proposed an Adding-4 method: 4 pseudo-observations are added with
2 successes and 2 failures and then the resulting (pseudo-)sample proportion is used. The method
is simple and performs extremely well. Here we propose an approximate method based on a
t-approximation that takes account of the uncertainty in estimating the variance of the observed
(pseudo-)sample proportion. It follows the same line of using a t-test, rather than z-test, in test-
ing the mean of a normal distribution with an unknown variance. For some circumstances our
proposed method has a higher coverage probability than the Adding-4 method. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

It is a common practice to construct a con$dence interval for a binomial proportion
or the di&erence of two proportions. For instance, in clinical trials it is often needed to
investigate the di&erence of the cure rates of two treatments. Most introductory statistics
textbooks only cover the Wald method, which is based on the asymptotically normal
approximation to the distribution of the observed sample proportion(s). It is tempting
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to use the Wald method due to the familiarity and simplicity. However, it has been
noted in the literature (e.g. Ghosh, 1979; Vollset, 1993; Newcombe, 1998a, b) that the
Wald method may perform erratically for small to medium samples. Recently, Agresti
and his co-workers (Agresti and Coull, 1998; Agresti and Ca&o, 2000) proposed an
approximate Adding-4 method: 4 pseudo-observations are added with 2 successes and 2
failures and then the resulting (pseudo-)sample proportion is substituted into the Wald
interval. The method is simple and performs extremely well.

However, in some situations, the Adding-4 method may still have a coverage per-
centage smaller than a speci$ed nominal level. We suspect that there is room for
improvement. Since in the Wald method, the variability of the variance estimator of
the sample proportion is ignored, a proper adjustment for this variability may improve
the coverage rate. This is the approach we will pursue here. The basic idea is to apply
Satterthwaite’s method (Satterthwaite, 1941) to approximate the distribution of the vari-
ance estimator (of the sample proportion) using a scaled chi-square distribution, leading
to a t-based interval, rather than a normal-based interval. The resulting con$dence in-
terval is simple to use. In particular, a closed form solution to the approximate degrees
of freedom of the corresponding t-distribution can be derived. Numerical studies show
its improvement over the Wald method and Adding-4 method. In the following, we $rst
discuss interval estimation for a binomial proportion based on one observed sample,
then for the di&erence of two binomial proportions based on two independent samples.

2. One binomial proportion

2.1. Methods

Suppose X is from a binomial distribution bin(n; p). Our goal is to construct a
(1 − 	)% con$dence interval for the parameter p. The most widely used or known is
based on an asymptotic normal approximation to the distribution of p̂= X=n

Wald : p̂ ± z	=2
√
V (p̂; n);

where z	=2 is the 1 − 	=2 quantile of the standard normal distribution, and

V (p; n) = p(1 − p)=n

is the variance of p̂. The above so-called Wald interval is known to perform terribly
(e.g. Agresti and Ca&o, 2000). A much better alternative is to use the score interval
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Agresti and Coull (1998) noticed that z20:025=1:962 ≈ 4, and as a simpli$cation proposed
adding 4 pseudo-observations with one-half as successes and the other half as failures
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to obtain a modi$ed estimator of p, p̃=(X+2)=(n+4). Then their Adding-4 con$dence
interval is obtained by using p̃ in the Wald interval:

Adding-4: p̃ ± z	=2
√
V (p̃; n+ 4):

Its performance is surprisingly good.
However, we suspect that there may be some room for improvement. As in testing

the mean of a normal distribution with an unknown variance, a t-test is better than a
z-test since the former takes account of the uncertainty in estimating the variance of the
estimated mean. A t-test is more conservative than a z-test, and hence is more likely to
maintain the Type I error within the speci$ed nominal level. We have a similar situation
here. Recall that in the Wald interval, the variance of p̂ is replaced by its estimate
V (p̂; n), and V (p̂; n) is treated as $xed. Following the line of Satterthwaite (1941),
we propose to approximate the distribution of V (p̂; n) (and similarly for V (p̃; n+ 4))
by a scaled chi-square distribution c�2

� with degrees of freedom �: c and � are derived
by matching the $rst two moments of V (p̂; n) with that of c�2

� . Then we have

c =
var(V (p̂; n))
2E(V (p̂; n))

; �=
2[E(V (p̂; n))]2

var(V (p̂; n))
;

where var(V (p̂; n)) can be calculated based on the $rst four moments of X (e.g.
Johnson et al., 1993, p.107) as

�(p; n) = var(V (p̂; n)) = var(X )=n4 + var(X 2)=n6 − 2Cov(X; X 2)=n5

= (p− p2)=n3 + [p+ (6n− 7)p2 + 4(n− 1)(n− 3)p2

− 2(n− 1)(2n− 3)p3]=n5 − 2[p+ (2n− 3)p2 − 2(n− 1)p3]=n4:

Of course, in practice we can use the plug-in estimator �(p̂; n).
Since p̂ is asymptotically normal, and if we assume that p̂ and V (p̂; n) are approx-

imately independent, then

p̂− p√
V (p̂; n)

=
p̂− p√
V (p̂;n)
c� c�

=
p̂− p√

V (p̂;n)
c�

var(V (p̂;n))
2E(V (p̂;n))

2E(V (p̂;n))2

var(V (p̂;n))

=
(p̂− p)=

√
E(V (p̂; n))√

V (p̂;n)
c�

approximately has a t-distribution t� with degrees of freedom �, which can be approx-
imated by

� ≈ 2V (p̂; n)2

�(p̂; n)
:

Let t�;	 denote the (1 − 	) quantile of t�. Our $rst proposed t-interval is

T1 : p̂ ± t�;	=2
√
V (p̂; n):

As to be shown later, it is more desirable to construct the t-interval using p̃, leading
to the second t-interval

T2 : p̃ ± tr;	=2
√
V (p̃; n+ 4);
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where the degrees of freedom r can be approximated by

r ≈ 2V (p̃; n+ 4)2

�(p̃; n+ 4)
:

Note that both � and r are in the order of n, implying that the T1 and T2 methods
will reduce to the Wald and Adding-4 methods, respectively, as the sample size n tends
to in$nite. Hence the t-based methods can be regarded as $nite sample adjustments for
the Wald or Adding-4 intervals.

2.2. Evaluation

A simulation study was conducted to evaluate the performance of the above various
methods. We restrict our attention to 	 = 0:05. The coverage probability (CP) of any
interval with a given n can be calculated as

CP =
n∑
x=0

(
n
x

)
px(1 − p)n−xIx;

where Ix indicates whether the con$dence interval covers p or not when X = x. Note
that for any given n and X = x, any of the above methods gives a $xed con$dence
interval (i.e. the two endpoints of the interval are not random). Similarly, the average
width of any con$dence interval is

AW =
n∑
x=0

(
n
x

)
px(1 − p)n−xWx;

where Wx is the width of the con$dence interval when X = x.
Fig. 1 gives the CPs of the four methods for four di&erent sample sizes n= 5, 10,

20 and 30. First, it is veri$ed that the Adding-4 method performs as well as the score
method. Second, the bad performance of the Wald interval is obvious. Third, the T1
method improves over the Wald method but still does not work well.

The trouble of both the T1 and Wald methods is largely caused by p̂=0 or 1 when
X = 0 or n, leading to V (p̂; n) = 0 and thus a zero-width of the resulting interval. In
view of the good performance of the Adding-4 method, in the T1 and Wald methods
we replace p̂ by p̃ if and only if X = 0 or n. The results are presented in Fig. 2. It
is obvious that, compared with that in Fig. 1, the performance of either method has
improved. However, since there is still some under-coverage when p is near 1

2 , and
that p̃ can be interpreted as a weighted average of p̂ and 1

2 , we decide to use the
T2 method and compare it with the Adding-4 method. This will be the focus of the
remaining discussion.

Fig. 3 presents the results. It is observed that the T2 method has some improvement
over the Adding-4 method in terms of having CP not smaller than the speci$ed nominal
level. This is obvious for p near 0 or 1 when n=5. This is not surprising since t�;	 ¡ z	
for any $nite �. This also implies that the T2 interval is wider and more conservative
than the Adding-4 interval. Fig. 4 compares their interval widths, and the di&erence is
not huge.
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Fig. 1. Coverage probability (CP) of the four methods for a binomial proportion p with sample size n.
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Fig. 2. Coverage probability (CP) of the modi$ed T1 and Wald methods (adding 2 successes and 2 failures
if X = 0 or n) for a binomial proportion p with sample size n.
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Fig. 3. Coverage probability (CP) of the T2 and Adding-4 methods for a binomial proportion p with sample
size n.
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Fig. 4. Average width of the T2 (with solid lines) and Adding-4 intervals (with dotted lines) for a binomial
proportion p with sample size n.

3. Di�erence of two proportions

3.1. Methods

Suppose that now we observe two independent binomial variables: X1 ∼ bin(n1; p1)
and X2 ∼ bin(n2; p2). The goal is to construct a (1 − 	) level con$dence interval for
p1 − p2. The Wald interval is

Wald : p̂1 − p̂2 ± z	=2
√
V (p̂1; n1) + V (p̂2; n2);

where p̂1 =X1=n1 and p̂2 =X2=n2. Its performance is not satisfactory, as for one bi-
nomial proportion. The score interval can be also extended but it lacks a closed form
here. Agresti and Ca&o (2000) generalize the Adding-4 method as

Adding-4: p̃1 − p̃2 ± z	=2
√
V (p̃1; n1 + 2) + V (p̃2; n2 + 2);

where p̃i=(Xi + 1)=(ni + 2) for i=1, 2.
Our t-interval can be similarly applied here:

T2 : p̃1 − p̃2 ± td;	=2
√
V (p̃1; n1 + 2) + V (p̃2; n2 + 2);

where the degrees of freedom is

d ≈ 2[V (p̃1; n1 + 2) + V (p̃2; n2 + 2)]2

�(p̃1; n1 + 2) + �(p̃2; n2 + 2)
:
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3.2. Evaluation

Figs. 5–7 present some numerical results for various sample sizes and p2 = 0:1,
0.3 and 0.5, respectively. It can be seen that the Adding-4 method works extremely
well, but in several places the T2 method improves the coverage probability over it,
especially when p1 is close to 1.

4. Other comparisons

The basic idea of our proposed t-based method is general and can be applied to
other tests. Here we illustrate its use to yield a modi$ed score method to construct a
con$dence interval for a binomial proportion. In addition, we compare the performance
of the modi$ed method with another modi$ed score method, the continuity-corrected
score interval, which has been found to have good performance and is a recommended
method in the literature (Vollset, 1993).

The score interval presented in Section 2.1 can be regarded as a normal-based interval
with the form: the point estimate plus=minus z	=2× SE. Hence, rather than using the
standard normal-based coeOcient, we can use the t-coeOcient to construct a t-based
interval

TS : p̂

(
n

n+ z2	=2

)
+

1
2

(
z2	=2

n+ z2	=2

)
± tr;	=2

√
Vs(p̂; n);

where

Vs(p̂; n) =
1

n+ z2	=2

[
p̂(1 − p̂)

(
n

n+ z2	=2

)
+
(

1
2

)(
1
2

)( z2	=2
n+ z2	=2

)]
;

and the degrees of freedom r is approximated by

r ≈ 2Vs(p̂; n)2

�s(p̂; n)

with �s(p̂; n) = �(p̂; n)n4=(n+ z2	=2)
4 and �(·; ·) is given in Section 2.1.

The score interval has much better performance than the Wald interval. An even
better one is the so-called continuity-corrected score interval (Vollset, 1993)

cc-Score :
(x ± 1

2 ) +
z2	=2
2 ± z	=2

√
x ± 1

2 − (x± 1=2)2

n +
z2	=2
4

n+ z2	=2
:

Fig. 8 presents the coverage probabilities of the score interval and its two modi$ed
versions. It is con$rmed that both modi$ed versions have better performance than
the score interval. The t-based method may still have some under-coverage while the
continuity-corrected score interval almost always has a coverage probability larger than
the nominal level (but may be too conservative). Fig. 9 gives the average widths of the
con$dence intervals. It can be seen that the t-based interval is only slightly wider than
the score interval. In contrast, the continuity-corrected score interval is much wider,
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Fig. 5. Coverage probability (CP) of the T2 and Adding-4 methods for the di&erence of two binomial
proportions, p1 − p2, with p2=0:1 and sample sizes n1 and n2.

especially for small sample sizes. In addition, comparing Figs. 8 and 9 with Figs. 3 and
4, we can also see that both the T2 and Adding-4 methods are also competitive when
compared with the continuity-corrected score interval. In summary, the two t-based
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Fig. 6. Coverage probability (CP) of the T2 and Adding-4 methods for the di&erence of two binomial
proportions, p1 − p2, with p2 = 0:3 and sample sizes n1 and n2.
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Fig. 7. Coverage probability (CP) of the T2 and Adding-4 methods for the di&erence of two binomial
proportions, p1 − p2, with p2 = 0:5 and sample sizes n1 and n2.
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Fig. 8. Coverage probability (CP) of the score, TS and continuity-corrected score methods for a binomial
proportion p with sample size n.

intervals (T2 and TS), appear to be promising methods that may strike a favorable
balance between a high coverage probability and a short interval. In particular, they
can be interesting alternatives to the commonly recommended continuity-corrected score
interval.
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Fig. 9. Average width of the TS (with solid lines), score (with dotted lines) and continuity-corrected score
(with dash lines) intervals for a binomial proportion p with sample size n.

5. Discussion

We have proposed approximate t-based con$dence intervals for a single proportion
and for the di&erence of two proportions, built on the point estimator (of a propor-
tion or the di&erence of two) by adding 4 pseudo-observations and an approximate
t-distribution of the standardized point estimator (i.e. the point estimator divided by
its estimated standard error). The method has a similar form to that of the Adding-4
method proposed by Agresti and co-workers, except that a t quantile, rather than a
standard normal quantile, is used as the coeOcient in constructing the con$dence in-
terval. The idea of using a t distribution, rather than a standard normal distribution to
approximate the distribution of a standardized point estimator is not new. Satterthwaite
(1941) proposed the general idea almost 60 years ago, and it has been used in many
other problems, but to our knowledge, not in our current context. Here the t-based
method is simple to use since there is a closed form for the approximate degrees
of freedom of the corresponding t-distribution. We found that in some situations our
proposed method can have a higher coverage probability than the Adding-4 method,
which in general is satisfactory. Of course, the price we pay for the t-based method
is the resulting wider con$dence intervals. Though the improvement of the t-based
method over that of the Adding-4 method is not dramatic, due to the common use of
con$dence intervals and the minimum extra-e&ort needed in implementing the t-based
method, we believe it is worthwhile using the t-based method. Furthermore, the idea
of using the t-based method is important and general. It provides a framework to
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adjust for the asymptotically normal inference with $nite samples in other more com-
plex settings. For instance, Pan and Wall (2002) extended this basic idea to approximate
inference in the context of using the sandwich variance estimator in generalized esti-
mating equations. Further applications, such as to other generalized linear models, are
worth future investigation.
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