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sample-sized data, such as arising from genomic studies; in particular, it can be used for variable
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same variable across clusters, which is shown both analytically and numerically to be more effective
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Variable selection in penalized model-based clustering

1. Introduction

Clustering analysis plays an important role in microarray data analysis for gene function
discovery (Eisen et al 1998) and disease subtype discovery (Golub et al 1999). Among
various methods, model-based clustering has been applied (Li and Hong 2001; Yeung et al
2001; Ghosh et al 2002; McLachlan et al 2002). In such a high-dimensional but low-sample-
sized data setting, it is necessary to conduct variable selection (Pan and Shen 2007). For
example, in clustering microarray samples for cancer subtype discovery, most of the genes
in the genome are likely to be non-informative to discriminating between cancer subtypes;
inclusion of many such non-informative genes may mask or distort the underlying clustering
structure. A common approach taken in practice is a two-step procedure: first a preliminary
variable selection is conducted based on some ad hoc criterion, then the selected variables
are used for clustering. Pan et al (2006) and Pan and Shen (2007) gave some numerical
examples demonstrating possible pitfalls of such a two-step approach to variable selection,
and advocated simultaneous variable selection and model fitting. A feasible approach is
through regularization in model-based clustering (Pan and Shen 2007). The key idea is that,
under a finite mixture of normal distributions with a common diagonal covariance matrix, for
any variable, if its cluster-specific means are all equal, then this variable is non-informative
to clustering. Hence, a penalty can be added to the log-likelihood to encourage an equal
estimate of the mean parameters across clusters for any variable to realize variable selection.
A potential drawback of the L; penalty is that it treats the mean parameters individually and
separately; for a noise variable, even if most of its cluster-specific mean parameter estimates
are correctly shrunken to be equal with only few others being unequal, then this variable will
be deemed incorrectly to be informative. Here we propose penalizing all the mean parameters
of the same variable together, encouraging them to be all equal, thus realizing more effective

variable selection. The proposed penalty is similar to that for grouped variables in Lasso
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(Yuan and Lin 2006) and in penalized model-based clustering (Xie et al 2007). However, we
emphasize that the former is for parameters of the same variable across clusters (or classes
in supervised learning), not parameters for grouped variables as in Yuan and Lin (2006) and
Xie et al (2007). In fact, as to be shown, these two grouping schemes can be combined.

Analogous to that for naive Bayes and recent developments in supervised learning (e.g.,
Tibshirani et al 2003; Bickel and Levina 2004), it has been argued that it is more effective
to work with an independence model involving diagonal covariance matrices in model-based
clustering analysis for high-dimensional data (Fraley and Raftery 2006; Pan and Shen 2007).
Penalized model-based clustering with a common diagonal covariance matrix (Pan and Shen
2007) and that with cluster-specific diagonal covariance matrices (Xie et al 2007) have been
investigated. Here, following the same line of arguments, we restrict our attention to a
common diagonal covariance matrix; an extension to cluster-specific diagonal covariance
matrices will be discussed at the end.

This article is organized as follows. Section 2 first reviews the L; penalization method of
Pan and Shen (2007) and one for grouped variables of Xie et al (2007), then develops a
new method that groups the multiple mean parameters of the same variable together. In
addition, the two grouping schemes on parameters and variables respectively are proposed
to be combined. Section 3 provides simulation studies and a gene expression data analysis
for leukemia subtype discovery, demonstrating the utility and advantage of our proposed
methods over existing approaches. Section 4 further generalizes the proposed method to the
case with cluster-specific diagonal covariance matrices. Section 5 summarizes the main points

and outlines some future work.

2. Methods

Suppose that z;,7 = 1,2,--- ,n are K—dimensional observations, which have been stan-

dardized to have sample mean 0 and sample variance 1 across all n observations. In Normal
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mixture model-based clustering, it is assumed that each observation z; follows a mixture of

¢ multivariate normal distributions,
9
f@;0) = mifi(z;;0:)
i=1
where f;(.;6;) is the probability density function (pdf) of the Normal distribution with
parameters 6;, including mean vector p; and covariance matrix V;, for the ith component; 7;

is the prior probability that any observation comes from component 7. The log-likelihood for

data {z1,...,x,} is

log L(©) = Zlog (Z Wifi(xj;ﬁi)) i
j i
Maximizing log L(©) yields the maximum likelihood estimator (MLE). To compute MLE,

the most commonly used algorithm is the EM (Dempster et al 1977). To implement the EM,

one starts with the complete-data log-likelihood

log Le(©) = > )~ 2 log(mi fi(w; 6:),
where z;; is the indicator of whether z; comjes from component i. See McLachlan and Peel
(2002) and Fraley and Raftery (2002) for details.

For regularization, a penalty p,(©) with penalty parameter A is introduced according to the
goal of the analysis. It yields the corresponding penalized log-likelihood and complete-data
penalized log-likelihood

log Lp(©) =1og L(©) — pA(©) and logL.p(©) =log L.(O) — pA(O).

To maximize log Lp(©) to obtain the maximum penalized likelihood estimator (MPLE), an
EM algorithm can be derived through log L. p(©). The E-step of the EM calculates the
conditional expectation of log L. p(0): using ©) to denote the estimate at iteration r and

treating z;;’s as missing data, we have
Qr(©;0") = Eow (log Lep|X) = Y 0D 7 [logmi + log fi(wj; 6:)] = pa(©), (1)
i

where 7;; is the posterior probability that x; comes from component 7, and Tig-r) is its estimate
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as given in expression (3). The M-step maximizes Qp to update the estimated ©. In the
sequel, when deriving the updating formulas in the M-step, for simplicity we may suppress
dependence of the estimates on iteration r.

In what follows, unless specified otherwise, we assume that all clusters share a common

diagonal covariance matrix. Specifically, we assume

fiz;0;) = W exp (—%(fﬁ — i)'V (z ~ Mz’))

with V = diag(0?,04,--- ,0%), and [V| =[], 0.

2.1 Ly penalty

Pan and Shen (2007) proposed an L; penalty for the mean parameters:

A b @)

, .
where p;;,’s are the components of u;, the mean vector of cluster i.

Pan and Shen (2007) derived the following updating formulas for the EM algorithm
(Dempster et al 1977) to obtain MPLE:

A(T) — z(r)fz(xjaéz(r)) — T)fz(xjae(r))
K flz;;00) 97 fi(wy;07)

the posterior probability that the jth observation comes from component ¢,

A(r—i—l ZTZ (4)

the prior probability of an observation from the i*" component,

ZZ M@ — )2 /n, (5)

=1 j=1

(3)

the variance for the kth variable, and
no () A2 (1)
Tij T AG
) = 2z T Tk (1 ) (6)

S 7 |5 7wl
the mean for the kth variable in cluster ¢, with 7 =1,2,--- ;gand £k =1,2,--- | K.

Obviously, for a sufficiently large A, we have fi;, = 0. Since each variable £ has been

standardized to have sample mean 0, if fi;;, = ... = figr = 0, then variable k is noninformative
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in terms of clustering and can be considered as a noise variable and excluded from the

clustering analysis.

2.2 Vertical mean grouping

Within the framework of the L; penalty, each p; is individually penalized; on the other
hand, variable k is regraded as a noise variable if and only if 1, = ... = pg, = 0. Hence,
to realize more effective variable selection, it is natural to treat pix, ..., fgx as a group of
parameters, constructing a penalty that encourages all of them to be exactly 0. If we view a
cluster-specific mean as a row vector, the direction of the grouping on pi1, ..., fig is vertical,

hence we call it vertical mean grouping (VMGQG), for which we propose the following penalty:

= A\TZ:IIMII (7)

with pr = (Uik, ok, <+ 5 phor)’ and ||| = / f L u2 for k =1,2,--- K. Note that, for

any vector v, ||v|| denotes the Ly norm of v.
The updating formulas for 7;;, m; and o7 remain the same as (3)-(5), but that for p, is

different. We derive in Appendix A.1 the following:

THEOREM 1: The sufficient and necessary conditions for i = (fig), k =1,2,--- , K to

be the unique mazimizer to (1) are

diag (Zm,zm, e ,Zng) (g — fig) = \Wgor ”“’“” if and only if fuy # 0, (8)
j=1 j=1 j=1

~_ (XiaamTie X7 T2 Tik i1 meiie )
where [iy = ( Tt s et BRI 3 o has the form of the MLE, and

g n 1/2
(Z(z Tij$jk)2) < )\\/Eoi if and only if iy, = 0. 9)
i=1 j=1

It is clear that if the inequality in (9) is satisfied, we have fi1, = ... = figy = 0, thus variable
k is regarded as a noise variable. Next we highlight a key difference between (9) and (6).

From (6), we have

/\ok

k| € <
' Zg lle

if and only if fi; = 0,
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while (9) can be rewritten as

g ~2 2
i=1 Mg < Aoy
=X n
g Ej:l Tij

Hence, according to (9), if most of the components of /i are small (so that the quadratic

if and only if i, = 0.

mean of the components is less than the threshold), then we will have i, = 0; in contrast, by
(6), some larger components of i, may remain to be non-zero. This highlight the different
consequences of using the L; penalty and the grouped penalty; in particular, the effect of
the grouped penalty is its tendency of realizing ji;, = ... = figx = 0 simultaneously, thus
more effective variable selection.

Combining (8) and (9) yields

. )\\/501% -
r=|sign|1— - Vil 10
- ( I ( (>oio (Zj:1 TijTik)?) /2 N KLk (10

2 -1
Withyk:diag(l—{—”ﬂ/\figa’z 14+ % --,1+”ﬂlfﬂ) .

kel 22— 7157 Akl 25—y 7257 12271 7g;

Equation (10) naturally suggests an iterative algorithm to update [i . However, in simu-
lation studies, we found that it did not work well. As alternative, first, we used (9) to derive
whether i, = 0; if not, we tried the following two methods. First, we rewrote (8) iteratively

as
~(r+1 ~ N .
i = i) = Aaorig [ mll a1,
j=1
and then updated the components of y; one by one. Second, we applied a Newton algorithm

directly to solve (8). Although both methods worked better than using (10), the Newton

method seemed best and was used in all numerical examples.

2.3 Horizontal mean grouping

In some applications, we may have prior knowledge that a group of variables are likely to be
either informative or noise variables all together; for instance, all the genes in a biological
pathway are either relevant or irrelevant to a disease, depending on whether the pathway

is involved in the pathology of the disease. Xie et al (2007) proposed a grouped penalty
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function to incorporate such prior knowledge; they focused on the case with cluster-specific
covariance matrices. Here we give details on the case with a common covariance matrix.
Suppose that the variables can be grouped. Without loss of generality, we assume that
i = (tar, prazy - -+ i)' = (ud', p2 -, M) with each p™ corresponding to a group of
variables; dim(u") = ky, and ¥ _ k., = K. Correspondingly, the covariance matrix is
partitioned into V = diag(o?,03,--- ,0%) = diag(Vy,Va,---,Var) with V,, as a k,, X k,,
matrix. Other vectors are partitioned accordingly: for example, z; = (x}', x?', e ,x;"ﬂ)’ . As

in Xie et al (2007), we propose a grouped penalty:

pA(©) =AD" Venlull, (11)

i=1 m=1

As in the vertical mean grouping, if we view a cluster-specific mean as a row vector, the
direction of the grouping on the elements of u[* is horizontal, hence we call it horizontal
mean grouping (HMG).

For HMG, the updating formulas for 7;;, m; and o7 remain the same as (3)-(5); we only need
to derive that for ;. After some algebra given in Appendix A.2, we obtain the following

result:

THEOREM 2: The sufficient and necessary conditions for i = (4") to be the unique

mazximizer of (1) are

O )V (i = i) = Ak ”Z;“ if and only if fif" # 0, (12)
j=1 L
anxgnzv,;l < M kp if and only of 1" = 0, (13)
7j=1

where [if* =5, 7z />0 Tij has the form of the MLE.
Suppose that .J,, is the index set of the variables in group m. (12) can be rewritten as

if and only if i7" = 0.

Hence, if the average (based on a weighted quadratic mean) of the components of i is small
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enough, all the components of " are shrunken to be exactly zero; this is similar to that
in the vertical grouping, highlighting the effect of grouping and its key difference from its
counterpart with the L, penalty.

Easily (12) and (13) can be rewritten as

Mk, -
art = | sign | 1— - —— v (14)
( ( I m vmln>)+

-1
where v* = (I + W%Vm) and I is the identity matrix. (14) suggests an iterative

algorithm to update f;", which was used in all the numerical examples.

2.4 Combining horizontal and vertical mean groupings

We combine the heuristics for the vertical grouping with the prior knowledge for the hori-

zontal grouping, resulting in a penalty for vertical and horizontal mean groupings (VHMG):

M
pA(©) = A D v/ gkl (15)
m=1
with /'Lm = (/’L{nla 'ugn’, T 7/'L:]nl)l'
Again the updating formulas for 7;;, m; and o} remain the same as (3)-(5), and we only

need to derive that for p;,. In Appendix A.3, we derive the following theorem:

THEOREM 3: The sufficient and necessary conditions for i = (™) to be the unique

mazimizer of (1) are
(Zi;nj)vml (i — i) = ngﬁ% if and only if ™ £ 0 (16)
forall1=1,2, -J- -, g, and
A < M/ gkm if and only if j™ = 0, (17)
where " =375 7@ />0 Tij has the form of the MLE, and

_ n m Y/ —1 n myY/—1 n m Y/ —1
dp = H (ijl T ATVt D i T XTIV e Y T TV )

Conditions (16) and (17) yield

Mk, .
i = (sign (1= 2022 ) (19)
m +
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Although (18) suggests an iterative algorithm, we found that the below one performed better

and was used in our numerical examples:

. . A GFm m(r A\/— k )
D (81971 (1 _ VY )) (u ) _ AV Afzn )
)] i ")

2.5 Model selection

Following Pan and Shen (2006) and Pan et al (2006), we adopt a modified BIC as the model

selection criterion to account for regularization,
BIC = —2log L(©) + log(n)d,

where d, = g+ K+ gK —1—q is the effective number of parameters with ¢ = #{(3, k) : pir, =
0}, the number of mean parameters shrunken to be exactly zero. The idea was borrowed from
Efron et al (2004) and Zou et al (2004), who studied the issue in the context of penalized
regression. This modified BIC is used to select the number of clusters g and the penalization
parameter A jointly. Through a grid search, the optimal (g, 5\) is chosen to be the one with
the minimal BIC.

For any given (g, A), we run an EM algorithm multiple times with random starts to obtain
multiple local maxima; for our numerical examples, K-means results from random starts
were used as inputs to the EM. From the multiple runs, we selected © giving the highest

values of log Lp(©) as the final solution for a given pair of (g, \).

3. Results
3.1 Simulated data

We conducted simulation studies to investigate the effectiveness of the vertical mean group-
ing. For comparison, we also considered the standard method without penalization and
penalized methods with other forms of penalty. Only a common covariance across clusters
was examined. For each simulation set-up, we generated 100 simulated datasets; each dataset

contained 100 observations drawn from one or two clusters; each observation had dimension
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K = 300. For the null case with only one cluster in set-up 1, we generated each variable in
each observation independently from N(0,1), the standard Normal distribution with mean
0 and variance 1. For each of the other non-null set-ups, 80 observations came from one
cluster while the remaining 20 observations from the other cluster; the first K; variables
were informative, generated independently from N (0, 1) for the first cluster and from N (1, 1)
with p; # 0 for the second cluster; the remaining K — K variables were noises, all generated
independently from N(0,1). Simulation set-ups 2 and 3 corresponded to py = 1.5, and
K; =5 and K; = 10 respectively, while set-up 4 corresponded to p; = 1.25 and K; = 10.

For each simulated dataset, we fitted a series of models with the numbers of components
g = 1,2 and 3, and various values of penalization parameter . For comparison, we considered
the standard method with A = 0, the L; penalization method, the vertical mean grouping
penalization method, the horizontal mean grouping penalization method, and both vertical
and horizontal groupings penalization method. In the horizontal grouping, the group size
was 5 with each group consisting of either noise or informative variables only. The BIC was
used to select g for the standard method without penalization, while the modified BIC was
used to select both ¢ and A.

The results are detailed in Table 1. First, we consider selecting the correct number of the
clusters. All methods correctly selected g = 1 in set-up 1, a null case. For the other three
set-ups with g = 2 clusters, 1) the standard method without variable selection performed
worst, indicating the necessity of variable selection in presence of a large number of noise
variables; 2) the three grouping methods improved over that with the L; penalty, confirming
the importance of using the heuristics of VMG and the prior knowledge in HMG; 3) in overall,
the vertical grouping worked best. It was somewhat surprising that VMG performed better
than HMG, given that the latter used the correct and specific knowledge on the grouping

of variables while the former depended only on the general heuristics. The performance of
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VHMG was mixed: among the three grouping methods, it could be the best for set-up 2, the
second for set-up 3, and the worst for set-up 4.

In terms of variable selection for ¢ = 2, HMG and VHMG were two winners with the
mean selected numbers of the variables almost the same as the true values of z; and z,,
whereas VMG followed closely; all the three grouping methods performed better than their

counterpart with L; penalty.

[Table 1 about here.]

3.2 Real data

A leukemia gene expression dataset (Golub et al 1999) was used to demonstrate the utility of
the proposed vertical mean grouping method and its superior performance over the standard
and L penalized methods. The data contained 38 observations, each from a leukemia patient
with his/her biological sample arrayed. Among the 38 samples, 27 were acute myeloid
leukemia (AML) while the remaining 11 were acute lymphoblastic leukemia (ALL); the 27
AML samples could be further categorized into two subtypes: 8 T-cell and 19 B-cell samples.
For each sample, the expression levels of K = 7129 genes were measured. Following Dudoit
et al (2002), we pre-processed the data in the following steps: 1) truncation: any expression
level x;, was truncated below at 1 if z;; < 1, and above at 1600 if z;, > 1600; 2) filtering:
any gene was excluded if its max/min < 5 and mazx — min < 500, where maz and min
were the maximum and minimum expression levels of the gene across all the samples; 3)
transformation: the natural logarithms of the expression levels were used. Next, as in Pan
and Shen (2007), we pre-selected only the top 2000 genes with the largest sample variances
across the 38 samples. Finally, each array was standardized to have mean zero and standard
deviation one across the genes, then each gene was standardized to have mean zero and
standard deviation one across the samples.

For the horizontal grouping, the top 2000 genes were grouped according to the Kyoto
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Encyclopedia of Genes and Genomes (KEGG) pathways (Kanehisa and Goto 2000). About
46 percent of the 2000 genes were annotated in at least one of the 113 KEGG pathways. If
a gene was annotated in two or more pathways, it was randomly assigned to one of them.
The 113 KEGG pathway groups had the largest size 81, smallest size 1 and median size 4.
About three quarters of the groups had sizes less than 9. Any unannotated gene formed its
own group with group size 1.

Tables 2-3 show the clustering results. The vertical grouping (VMG) method could dis-
criminate not only between AML and ALL samples, but also between two ALL subtypes: the
T-cell and B-cell ALL samples were perfectly separated, while only one B-cell ALL sample
was mis-allocated to the cluster with AML samples. In contrast, the standard clustering
method without penalization yielded only two clusters: while most B-cell ALL samples were
mixed with all the T-cell ALL samples in a cluster, three B-cell samples were misclassified
into the cluster of the ALL samples. With 4 clusters, the L; penalty method performed
better than the standard method in discriminating between ALL and AML samples, and
between the two ALL subtypes, but four AML samples were mis-allocated into a cluster
with 17 B-cell ALL samples.

The horizontal grouping (HMG) gave 9 clusters, though one cluster was empty. It worked
well except that one cluster contained five B-cell ALL samples, two T-cell ALL samples and
one AML samples. VHMG also worked well, yielding 4 clusters, one of which was empty.
The empty cluster or component in HMG or VHMG could account for the non-normality of
the other components, such as caused by the existence of outliers.

In contrast to the 2000 genes used by the standard method, the penalized methods used
fewer genes with variable selection: the L; penalty, VMG, HMG and VHMG methods used

only 1281, 426, 504 and 54 genes. Using fewer genes not only helps uncover clustering
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structures underlying the data, but also facilitates interpreting the results and shedding

light on which genes are potentially involved in the underlying biology.
[Table 2 about here.]

[Table 3 about here.]

4. An extension

We have studied the vertical mean grouping with a common diagonal covariance across
clusters. In practice, the assumption of a common covariance matrix may not hold. Here we
extend the method to the case with cluster-specific diagonal covariance matrices, in which

the probability density function of component 7 is

1 1 _
fi(@;0;) = )RRy P <—§(~T — )1V o — Mz‘)) (19)
with V; = diag(0%,0%, -+ ,0%) and |V;| = [[5_, oZ. For such a model, a key to realizing

variable selection is to regularize variance parameters o2, in addition to mean parameters
i (Xie et al 2007).

We propose the following penalty

K K
Prioa(©) = Mvg D llell + 228 ) llo% — 1 (20)
k=1

k=1
with pux = (pak, ok, - -+ i)’ and % = (03, 05, - -+, 04)"- The updating formulas for 7;

and 7; are the same as (3)-(4); we only need to derive the updating formulas for o2, and j.

4.1 Vertical mean grouping

Using a similar argument as in Appendix A.1, we can prove the below theorem:

THEOREM 4: The sufficient and necessary conditions for any ji = (fix) to be the unique

mazimizer mazimizer of (1) are

' n n n ) A . ﬂ_k
diag | Y 7ijs Y o500 Y Toi | ik — k) = M/gdiag(oty, o3, -+, 00) 7=
=1 =1 i1 (|
if and only if i # 0, (21)
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~ _ E}z:l T1jZjk E}z:l T2 Lk E?:l TgiTjk !
where [i = ( Sty S 0 TS e has the form of the MLE, and
1/2

9 n 2
Zaijf (Z Tz-ja:jk> < A9 if and only if i, = 0. (22)
i=1 j=1

As before, (22) clearly shows the effect of grouping: whether the whole vector fi, is thresh-
olded to O is determined by the average (i.e. weighted quadratic mean) of the components

of [i, which is in the form of the MLE of x . Combining (21) and (22) leads to

iy = | sign [1— k] i (23)

/’L.k - S/lgn 1/2 Vk/'l’.k
-2
< =1 O (Z] 1TZ.7$JW)2) .
; i _Mvgod, g Mjged M)‘l
with v = diag (1 T L e T e )

4.2 Vertical variance grouping

Because the objective function (1) may not be convex in o%’s, we can only obtain a weaker

result:

THEOREM 5: The necessary condition for 6% # 1 to be a local mazimizer of Qp is

= 1 (xjk ,U'zk) -1
| =\ 24
Z( 252, T 251 e || ] (24)

ik

fori=1,2---,g. On the other hand, the sufficient and necessary condition for 62 =1 to
Ok
be a local maximizer of Qp 1is
o 2 i
HiﬁdTJ(_%1+£ﬁL¥£L)H</ﬁv@a%fZLTJﬂ/Q—($M‘-ukV)>0;

(25)
HZ?:1 T (_%1 + w) H < A2\/g, otherwise.

The proof is given in Appendix A.4. According to the above result, a computational
algorithm can be implemented as follows: we first check whether the sufficient and necessary
condition (25) for 6% = 1 is satisfied; if yes, we have 67 = 1 and stop; otherwise, an iterative

algorithm, e.g. the Newton algorithm, is developed to solve equation (24) to obtain 6% # 1.
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5. Discussion

In this article, we have proposed grouping the parameters of a variable and using a corre-
sponding penalty to realize more effective variable selection in model-based clustering for
high dimensional data. In addition, we combine this idea with that of grouping variables
when there is prior knowledge that some variables work in groups. Analytical and numerical
comparisons with the standard Li-norm that treat the parameters or variables individually
have established superior performance of the proposed methods. The idea of grouping pa-
rameters together to realize more effective model regularization is general. It can be used
in other model-based clustering methods, such as the one that incorporates prior knowledge
on variables as prior probabilities (Pan 2006). Furthermore, it can be applied to supervised
and semi-supervised learning for more than two classes: the parameters induced by the same
variable (or a group of variables) across classes can be grouped together and a corresponding
grouped penalty can be used. Wang and Zhu (2007) considered such an application in the
shrunken centroid classifier, though a different penalty with the L, ,-norm, not Ls-norm, on
groups of parameters was used.

For high-dimensional data, such as arising in genomic studies, we advocate the use of
diagonal covariance matrices, following the same line of arguments as in supervised learning
for such data (e.g. Tibshirani et al 2003; Bickel and Levina 2004). In particular, model-based
clustering with diagonal covariance matrices is more general than the popular K-means
clustering because the latter assumes not only a common diagonal covariance matrix across
clusters, but also all equal diagonal elements. Nevertheless, it is worth extending the proposed
methods to cases with more general covariance matrices, as discussed in McLachlan et al

(2003).
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APPENDIX

A.1 Proof of Theorem 1.

Using the vertical mean grouping penalty (7), we have

Qp(0;0")) = Eg (log Le,p| X) ZZ MNlog m; + log fi(x;; 6; AZf 12kl (26)

Since Qp(©;0M) is differentiable with respect to p; when gy # 0, the solution p must

satisfy the following equation

BquP(Q @(r ) =0 for all M.k 7& O; (27)

Qp(0,.) > Qp(Apy,.) for all Apy near 0.

where . in Qp(0,.) represents all parameters in Qp(0; OM) except i .

Note that Qp(0;0T) = 37,3 7i; [—5 (% — pir)?0r 2] — AV/gllsl| + C, where C is a
constant w.r.t. p . After taking derivatives, the first equation of (27) reduces to (8). Since
both minus the first term in ()p and the Ly-norm penalty are convex, (8) is the sufficient
and necessary condition by the Karush-Kuhn-Tucker (KKT) condition.

From the second equation of (27), we have

LHS = sz{ STTE }+0

s =S¥ = o = Ao = AVl Al +C



Variable selection in penalized model-based clustering 17

Thus
pr=0
— ZZTZ] [_ x]k :| ZZTZJ [_ -T]lc - Aﬂzk) Uk :| - /\\/EHA/MH
= AollAull = =35 ZZTij(—Q%kAMk + (Apar)?)o, 2
T g

1
= AWGoL =D Y mw A /|| Al — 3 > > i (D) /|| Al (28)
i i

Note that 2>, >, Tii (Apie)?) /|| Ap k|| — 0T as Apy, — 0. By the Cauchy-Schwarz inequal-

ity, we have >, > . iz Api/||Aprl| < [|D2;7;7]], and the equality can be attained.
Therefore, (28) is equivalent to (9), a sufficient and necessary condition for p = 0.
A.2 Proof of Theorem 2

Consider two cases:

i) u™ # 0. We can treat QQp as the Lagrange multiplier for a constrained optimization
problem with the penalty as the inequality constraint, and considering that both minus the
objective function and the L, norm penalty function are convex, by the Karush-Kuhn-Tucker

(KKT) condition, we have the following sufficient and necessary condition

0Qr /0" = 0 = 3 Vil (a = ot/ = 0,
J
leading to (12).

ii) p* = 0. By definition, we have

Qp(0,.) = Qp(Au",.) for any Ap™ close to 0
1
= ZT” W lal + Cy >
—ZTZJQ 7= ApIV (@] = Ap) = AWkl | A | + Cy
= ZTijx?’Vr;lA%”/HAMTH = > T AV AR @A) < AV E:

J J

Plugging-in Ap* = ), 7 V., tx* and letting oo — 0, we obtain (13) from the above inequal-

ity. On the other hand, by the Cauchy-Schwarz inequality, we have >, 7271V, YAp™ /|| Apm||
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< Zj TijxgnIV,;lH, and because V,-! is positive definite, we obtain (13) from the above
inequality.
A.3 Proof of Theorem 3

Using the penalty (15), we have

0;0) ZZ log ; + log f;(x;; 6 AZ\/g k|12 - (29)

Since Qp(©;0M) is differentiable with respect to 4™ when p™ # 0, the solution x™ must

satisfy the following equation

7 Qr(©:60) =0 ifum £ 0

Qp(0,.) = Qp(Ap™,.) if g™ =0 and Ap™ near 0.

(30)

where . in Qp(0,.) represents all parameters in Qp(0; ©™) except u™.

Notice that Qp(0;0") =—=3 37,37 7 [(x; — ") Vi M — )] = WG - Emllu™|| + C,
where C' is a constant w.r.t. ™. After taking the derivative w.r.t. ", the first equation of
(30) becomes (16). Again according to the KKT condition, it is a sufficient and necessary
condition for x™ # 0 to be the unique maximizer of (29).

For the second equation of (30),

1 .
LHS = -2 > 7 [(2)'V ()] + C,
Tt g
1 . i )
RHS = ) > 7 [—g(xj—AuT)le(ﬂﬁj—Aui) — MGkl Ap™|| + C.
v g
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Thus

um =0

= - D23 [ V)] 2

_% Z ijm [ = A Vi (@ — Ap™)] = AG - || AK™|
W Tl 1891 3 323 |V ) Vi )|

|

2

1

MG > VA Ve L R ot e gy
ok 2 22V g 9 2 2o g )

!

Notice that |57, >, Tl Vo /| Ap™| ||| — 0t as Ag™ — 0, and by the Cauchy-
Schwarz inequality, we have =, 37 72V p /[|Ap™|| < dm, and the equality can be
attained. Therefore, (31) is equivalent to (17).

A.4 Proof of Theorem 5

We have

K

Qp(0:0") = Eow (log Lep|X) = 0 i) logmi +log fi(x;:6)] = %2 Y Vgllo, — 1]
i k=1 (32
Since Qp(0;0() is differentiable with respect to 0% when 0% # 1 for k = 1,2,--- K, a
local maximum of (32) must satisfy the following conditions

%Qp(@; M) =0 for all 0% # 0; (33)

Qr(1,.) > Qp(1+ Ac%,.) for all Ac? near 0.

where . in Qp(1,.) represents all parameters in Qp(0; O)) except o2.
Since Qp(©; ) ==z > Tij [log(of,) + (wjk — pie) 035> (k. — par) | — A2y/9l|0% — 1|+
C, where C is a constant w.r.t. 0%, by taking the derivative, we obtain (24) from the first

equation of (33).
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If 02 = 1, the second equation of (33) gives

LHS = —% Z Zj:rij (@6 — pax) (6 — pax)] + C,
RHS = —% Z an [log(1 + Aojy) + (zk — pa) (1 + Ac) ™ (e — par)] — Aav/gl|Ad% ||+ C.
]
Thus
ai =1

g S i o — ) e — )] 2
i
—% Z Zﬂ'j [log(1 + Aojy) + (zjk — par)' (1 + Do) " @ik — pak)] — Aa/g|| A% ]
t g
= lyyllAdi] >
—% Z ZTU [log(1 + Aci) — (jk — par) (Aciy /(1 + Aoge)) (e — Hin)]
i
From Taylor’s expansions log(1 + z) = x — ?/2 4+ O(2?®) and /(1 + z) = x — 22 + O(z?),
we obtain
= Mo/l AGK] = =5 305 3705 Tl (1 = (@gm — pan)?) Aoy
~(1/2 = (o — 1) AR)? + O(AcH))]
= aya Sl - - ) A0 /100
~(1/2~ (e~ 1)) (AR B+ O(Ac3))/ A
Notice that, as Aoy — 0, 5 7, > 735(1/2— (26 —pix)*) (Acf,))? /[ Ao || — 0 if 35 7,(1/2—
(@jn = pa)®) > 05 5353775 (1/2 = (wjk — pin)*) (A05,))?/[|Ac%|| — 0 otherwise. By the
Cauchy-Schwarz inequality, we have ||, 7;(1 — (zjn — pr)?)|| = 32,30, 7(1 — (x50 —
wir)?)Ac? /||Ac? ||, and the equality can be attained.

Therefore, we obtain (25) as the sufficient and necessary condition for 0% = 1.
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Table 1
Simulation results: For set-up 1, the truths are g =1, 21 = 10, 2o = 290 and p1 = 0.0; for set-up 2, g =2, z1 =0,
2o =295 and p1 = 1.5; for set-up 3, g =2, z1 =0, z2 =290 and p1 = 1.5; for set-up 4, g =2, z1 =0, z2 =290 and

w1 = 1.25.
A=0 Ly VMG HMG VHMG

Set-up g N N z1 ED) N EZ) ED) N EZ) ED) N z1 ED)
1 100 100 10.0 290.0 100 10.0 290.0 100 10.0 290.0 100 10.0 290.0

1 2 0 0 - - 0 - - 0 - - 0 - -
3 0 0 - - 0 - - 0 - 0 - -

1 100 100 5.0 295.0 78 5.0 295.0 76 5.0 295.0 59 5.0 295.0

2 2 [o] 0 - - 22 0.2 292.8 19 0.0 295.0 39 0.0 295.0
3 [o] 0 - - 0 - - 5 0.0 295.0 2 0.0 295.0

1 100 18 10.0 290.0 1 10.0 290.0 2 10.0 290.0 0 - -

3 2 0 60 0.0 286.0 99 0.1 287.7 89 0.0 289.9 93 0.0 290.0
3 0 22 0.0 286.2 0 - - 9 0.0 290.0 7 0.0 290.0

1 100 92 10.0 290.0 45 10.0 290.0 53 10.0 290.0 63 10.0 290.0

4 2 0 6 0.0 284.7 49 0.9 291.9 36 0.0 289.9 30 0.0 290.0
3 0 2 0.0 287.0 6 0.2 293.8 11 0.0 290.0 7 0.0 290.0
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Table 2
Clustering results for Golub’s data.

Methods A=0 Ly VMG
#genes 2000 1281 426
Clusters 1 2 1 2 3 4 5 6 1 2 3
Samples (#)
ALL-T (8) 0 8 0000 0 8 8 0 0
ALL-B(19) 3 16 1 01 0 17 0 0 1 18
AML (11) 11 0 0 6 0 1 4 0 0 11 0
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Table 3

Clustering results for Golub’s data (continued).

Methods HMG VHMG
#genes 504 54
Clusters 12 3 45 6 7 8 9 1 2 3 4
Samples (#)
ALL-T8) 0 2 0 0 6 0 0 0 O 8 0 0 0
ALL-B(19) 0 5 1 8 0 4 1 0 0 0 1 18 0
AML (11) 7 1 0 0 0 0 0 3 © 0 11 0 0




