Chapter 9. Clustering Analysis

PubH 7475/8400

April 2007

©Wei Pan

Email: weip@biostat.umn.edu

Http: www.biostat.umn.edu/~weip

Outline

- Introduction
- Hierachical clustering
- Combinatorial algorithms
- K-means clustering
- K-medoids clustering
- Mixture model-based clustering
- Practical issues
 - # of clusters, stability of clusters,...

Introduction

- Given: $X_i = (X_{i1}, ..., X_{ip})', i = 1, ..., n$
- Goal: Cluster or group X_i 's "similar" to each other together;

Or, predict X_i 's class Y_i with no training info on Y's.

- Unsupervised learning, class discovery,...
- Ref: 1. textbook, Chap 14;
 - 2. A.D. Gordon (1999), Classification, Chapman&Hall/CRC;
 - 3. A. Kaufman & P. Rousseeuw (1990). Finding groups in data: An introduction to cluster analysis, Wiley;

- 4. Many many papers...
- Define a metric of distance (or similarity):

$$d(X_i, X_j) = \sum_{k=1}^{p} w_k d_k(X_{ik}, X_{jk})$$

- $-X_{ik}$ quantitative: d_k can be Euclidean distance, absolute distance, Pearson correlation, etc.
- $-X_{ik}$ ordinal: coded as (i-1/2)/M (or simply as i?) for i=1,...,M; then treated as quantitative.
- $-X_{ik}$ categorical: specify $L_{l,m}=d_k(l,m)$ based on subject-matter knowledge; 0-1 loss is commonly used.
- $-w_k = 1$ for all k commonly used, but it

may not treat each variable (or attribute) equally!

standardize each variable to have var=1.

– Distance \leftrightarrow similarity, e.g. sim = 1 - dHierachical Clustering

- A dendrogram (an upside-down tree):

 Leaves represent observations X_i 's; each subtree represents a group/cluster, and the height of the subtree represents the degree of dissimilarity within the group.
- Fig 14.12

• Bottom-up (agglomerative) algorithm

given: a set of observations
$$\{X_1,...,X_n\}$$
. for $i:=1$ to n do $c_i:=\{X_i\}$ /* each obs is initially a cluster */ $C:=\{c_1,...,c_n\}$ $j:=n+1$ while $|C|>1$ $(c_a,c_b):=argmax_{(c_u,c_v)}sim(c_u,c_v)$ /* find most similar pair */ $c_j:=c_a\cup c_b$ /* combine to generate a new cluster*/ $C:=[C-\{c_a,c_b\}]\cup c_j$ $j:=j+1$

• Similarity of two clusters

Similarity of two clusters can be defined in three ways:

- single link: similarity of two most similar members

$$sim(C_1, C_2) = max_{i \in C_1, j \in C_2} sim(Y_i, Y_j)$$

- complete link: similarity of two least similar members

$$sim(C_1, C_2) = min_{i \in C_1, j \in C_2} sim(Y_i, Y_j)$$

- average link: average similarity b/w two members

$$sim(C_1, C_2) = ave_{i \in C_1, j \in C_2} sim(Y_i, Y_j)$$

• R: hclust()

Combinatorial Algorithms

- No probability model; group observations to min/max a criterion
- Clustering: find a mapping C: $\{1, 2, ..., n\} \rightarrow \{1, ..., K\}, K < n$
- A criterion

$$W(C) = \frac{1}{2} \sum_{c=1}^{K} \sum_{C(i)=c} \sum_{C(j)=c} d(X_i, X_j)$$

•
$$T = \frac{1}{2} \sum_{i=1}^{K} \sum_{j=1}^{K} d(X_i, X_j) = W(C) + B(C),$$

$$B(C) = \frac{1}{2} \sum_{c=1}^{K} \sum_{C(i)=c} \sum_{C(j)\neq c} d(X_i, X_j)$$

- Min $B(C) \leftrightarrow \operatorname{Max} W(C)$
- Algorithms: search all possible C to find $C_0 = argmin_C W(C)$

• Only feasible for small n and K: # of possible C's

$$S(n,K) = \frac{1}{K!} \sum_{k=1}^{K} (-1)^{K-k} C(K,k) k^n$$

E.g. $S(10,4) = 34105, S(19,4) \approx 10^{10}.$

• Alternatives: iterative greedy search!

K-means Clustering

- Each observation is a point in a p-dim space
- \bullet Suppose we know/want to have K clusters
- First, (randomly) decide K cluster centers, M_k
- Then, iterate the two steps:

- assignment of each obs to a cluster

$$C(i) = argmin_k d(X_i, M_k)$$

new cluster center is the mean of obs's in each cluster

$$M_k = Ave_{C(i)=k} X_i$$

- Euclidean distance d() is used
- May stop at a local minimum for W(C); multiple tries
- R: kmeans()
- +: simple and intuitive
- -: Euclidean distance \Longrightarrow 1) sensitive to outliers; 2) if X_{ij} is categorical then?

K-medoids Clustering

- Similar to K-means; rather than using the mean of a cluster to represent the cluster, use an observation within it!
- First, (randomly) start with a C
- Find $M_k = X_{i_k^*}$ with $i_k^* = argmin_{\{i:C(i)=k\}} \sum_{C(j)=k} d(x_i, x_j)$
- \bullet Update C:

$$C(i) = argmin_k d(X_i, M_k)$$

- Repeat the above 2 steps until convergence
- R: package cluster, containing pam() for partitioning around medoids, clara() for large

datasets with pam, silhouette() for calculating silhouette widths, diana() for divisive hierarchical clustering, etc.

- Both K-means and K-medoids: not a probabilistic method; "hard", not "soft", grouping
 ⇒ An alternative: model-based clustering
 Mixture Model-based Clustering
- Assume each X_i is from a mixture of Normal distributions with pdf

$$f(x; \Phi_K) = \sum_{r=1}^K \pi_r \phi(x; \mu_r, V_r)$$

where $\phi(x; \mu_r, V_r)$ is the pdf of $N(\mu_r, V_r)$.

 \bullet Each component r is a cluster; probabilistic

- For a fixed K, use the EM to estimate Φ_K (to obtain MLE).
- Try various values of K = 1, 2, ..., then use AIC/BIC to select the one with the first local minimum.

$$\log L(\Phi_K) = \sum_{i=1}^n \log f(X_i; \Phi_K)$$

$$AIC = -2\log L(\hat{\Phi}_K) + 2\nu_K$$

$$BIC = -2\log L(\hat{\Phi}_K) + \nu_K \log(n)$$

where ν_K is #para. in Φ_K .

• Or, test H_0 : $K = k_0$ vs H_A : $K = k_0 + 1$; use bootstrap

• EM algorithm: derivation?

Given: a set of observations $\{X_1, ..., X_n\}$ k < -1; init $\pi_r^{(0)}$, $\mu_r^{(0)}$'s and $V_r^{(0)}$'s

While (not convergent) do

For all
$$i = 1, ..., n$$
 and $r = 1, ..., K$ do
$$\tau_{ri}^{(k)} = \frac{\pi_r^{(k)} \phi(X_i; \mu_r^{(k)}, V_r^{(k)})}{f(X_i; \Phi^{(k)})}$$

/* τ_{ri} is posterior prob Y_i in component r */

$$\pi_r^{(k+1)} = \sum_{i=1}^n \tau_{ri}^{(k)} / n$$

$$\mu_r^{(k+1)} = \sum_{i=1}^n \tau_{ri}^{(k)} X_i / \sum_{i=1}^n \tau_{ri}^{(k)}$$

$$V_r^{(k+1)} = \frac{\sum_{i=1}^n \tau_{ri}^{(k)} (X_i - \mu_r^{(k+1)}) (X_i - \mu_r^{(k+1)})^T}{\sum_{i=1}^n \tau_{ri}^{(k)}}$$

$$k < -k + 1$$

Each X_i is assigned to the component with largest τ_{ri}

- +: a cluster is a set of obs's from a Normal distribution—clear def; can model V_r and thus shape/size of clusters; probablistic
- -: why Normal?
 Slow

Cluster size >= dim of X_i if no restriction on $V_r \Longrightarrow$ have to do variable selection or dim reduction if p is large

- K-means: a special case of Normal mixture model-based clustering by assuming all $V_r = \sigma^2 I$
- Software: (Fortran) EMMIX or EMMIX-GENE free at

http://www.maths.uq.edu/au/~gjm/emmix-gene/

R: mclust package

An Example

- Ref.: Pan et al (2002, Genome Biology), data available
- 2+4 samples (w/o + with pneumococcal infection), 1176 genes of rats, radiolabeled cDNA arrays
- Goal: detecting differential gene expression
- Clustering two-sample t-statistics
- The fitted mixture model is

$$f(y; \hat{\Phi}) = .042 * N(6.74, 77.07) +$$

.510 * N(0.88, 5.56) + .448 * N(-0.31, 1.15).

• Fig 4

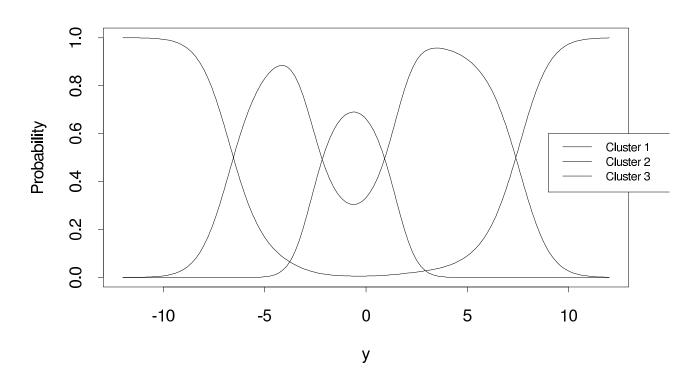


Figure 1: Posterior probability of being in each cluster as a function of the t-statistic y.

Other Methods

• Hierarchical clustering: divisive (top-down) algorithm (p. 478, 480)

• Self-Organizing Maps: a constrained version of K-means (section 14.4)

Practical Issues

- How to select the number of clusters? Anyway, what is a cluster?
 Stability or significance of clusters
- Any clusters?
 - A global test: a parametric bootstrap
 Ref: McShane et al (Bioinformatics, 2002)
 - $-H_0$: a Normal distr or a uniform or ...?
 - (optional) Principal component analysis (PCA):use first 3 PC's for each obs

PC's are orthogonal

- Under H_0 , simulate data Y_i^b from a MVN component-wise mean/var same as that of the data's PC's
- For each obs Y_i d_i is the distance from Y_i to its closest

neighbor

similarly for $d_i^{(b)}$ using $Y_i^{(b)}$, b = 1, ..., B

- $-G_0$ is the empirical distr func (EDF) of d_i 's G_b is the EDF of $d_i^{(b)}$'s
- Test stat

$$u_k = \int [G_k(y) - \bar{G}(y)]^2 dy$$

for k = 0, 1, ..., B, and $\bar{G} = \Sigma_b G_b/B$.

$$-P = \#\{b : u_b > u_o\}/B$$

- Reproducibility
 - Use of the bootstrap
 Ref: Zhang & Zhao (FIG, 2000); Kerr &
 Churchill (PNAS, 2001)
 - Reproducibility indices
 - * Ref: McShane et al (Bioinformatics, 2002)
 - * Robustness (R) index and Discrepancy (D) index
 - * Again, parametric bootstrap
 - * Y_i 's: original obs's
 - * $Y_{ij}^{(b)} = Y_{ij} + \epsilon_{ij}^{(b)}$, where $\epsilon_{ij}^{(b)}$ iid $N(0, v_0)$, and $v_0 = median(v_i's)$,

- $v_i = var(Y_{i1}, ..., Y_{iK})$
- * Cluster $\{Y_j^{(b)}: j=1,...,K\}$ for each b=1,...,B
- * Find the best-matched clusters from $\{Y_j^{(b)}\}$ and $\{Y_j\}$,
- * For each paired clusters, $r_k^{(b)}$ =proprotion of pairs of obs's in both clusters (i.e kth clusters)
- * R is an average of $r_k^{(b)}$,s
- *D is an avarege of proportions of pairs of obs's not in the same cluster
- * Note: Finding best-matched clusters may not be easy

- Determine # of clusters
 - In general, a tough problem; many many methods
 - Ref: Tibshirani et al (2002), "Clustering validation by prediction strength". Statistica Sinica.
 ref's therein
 - Clustering and classification
 - Main idea: suppose we have a training dataset and a test dataset; comparing the agreement b/w the two clustering results; $k = k_0$ will give the best agreement
 - 1) Cluster the test data into k clusters;

- 2) Cluster the training data into k clusters;
- 3) Measure how well the training set cluster centers predict c-membership in the test set.
 - * Fig 1
- Define "prediction strength":

$$ps(k) = \min_{1 \le j \le k} \frac{1}{n_{kj}(n_{kj} - 1)} \sum_{i \ne i' \in A_{kj}} I(D[C(X_{tr}, k), X_{te}]_{ii'} = 1)$$

where A_{kj} : test observations in test cluster j, and $n_{kj} = |A_{kj}|$; D[C(.,.), X] is a matrix with ii'th element $D[C(.,.), X]_{ii'} = 1$ if obs's i and i' fall into the same cluster in C, and = 0 o/w.

- Choice of k: largest k such that $ps(k) > ps_0$.

 ps_0 : 0.8-0.9

$$ps(1) = 1$$

- Fig 2
- In practice, use repeated 2-fold (or 5-fold) cross-validation
- Other criteria
 - Let B(k) and W(k) be the between- and within-cluster sum of squares
 - Calinski & Harabasz (1974):

$$\hat{k} = argmax_k \frac{B(k)/(k-1)}{W(k)/(n-k)}$$

note: CH(1) not defined.

- Hartigan (1975):

$$H(k) = \frac{W(k)/W(k+1) - 1}{n - k - 1}$$

 \hat{k} : smallest $k \geq 1$ such that $H(k) \leq 10$.

- Krzanowski & Lai (1985):

$$\hat{k} = argmax_k \left| \frac{DIFF(k)}{DIFF(k+1)} \right|$$

where $DIFF(k) = (k-1)^{2/p}W_{k-1} - k)^{2/p}W_k$, p is the dim of an obs.

- Gap stat (Tibshirani et al, JRSS-B, 2001)
 - * Motivation: as k increases, W_k ...? Fig 1
 - * $Gap(k) = E^*[\log(W_k)] \log(W_k)$, where E^* is expectation under a reference distribution (e.g. uniform).

- * Algorithm:
- Step 1. Cluster the observed data and obtain W_k , $k = 1, ..., k_{max}$
- Step 2. Generate B reference data sets (e.g. using the uniform distr), and obtain $W_k^{(b)}$, b=1,...,B and $k=1,...,k_{max}$.

 Compute the gap stat

$$Gap(k) = \log(W_k) - \log(W_k)$$
 where $\log(W_k) = \sum_b \log(W_k^{(b)}) / B$.

Step 3. Compute SD

$$sd_k = \sum_b [\log(W_k^{(b)}) - \log(W_k)^2]^2/B$$
 and define $s_k = sd_k\sqrt{1 + 1/B}$.

Step 4. Choose a smallest k such that

$$Gap(k) \le Gap(k+1) - s_{k+1}$$

- * Fig 2
- Use of bagging: Dudoit & Fridlyand (Genome Biology, 2002)more ref's
- Assessing clustering results
 - Define a_i = average dissimilarity between obs i and all other obs's of the cluster to which obs i belong;
 - For all other clusters A, d(i, A) = average dissimilarity of obs i to all obs's of cluster A;

- $-b_i = min_A d(i, A)$
- -Silhouette width: $s_i = \frac{b_i a_i}{max(a_i, b_i)}$
- -a large $s_i \Longrightarrow \text{obs } i$ is well clustered; a small s_i (close to 0) $\Longrightarrow \text{obs } i$ lies between two clusters; a negative $s_i \Longrightarrow \text{obs } i$ is probably in a wrong cluster.