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Introduction
e GGlven: Xz' — (Xi17 ---;Xip),; 1 = 1, eeey 1V

e Goal: Cluster or group X;’s “similar” to each
other together:;
Or, predict X;’s class Y; with no training info

on Y'’s.

e Unsupervised learning, class discovery;,...

e Ref: 1. textbook, Chap 14;
2. A.D. Gordon (1999), Classification, Chap-
man&Hall/CRC;
3. A. Kaufman & P. Rousseeuw (1990). Find-
ing groups in data: An introduction to clus-

ter analysis, Wiley;



4. Many many papers...

e Define a metric of distance (or similarity):

p
d(X;, Xj) = kzlwkdk<Xikank>

— X1 quantitative: dj. can be Fuclidean dis-
tance, absolute distance, Pearson correla-
tion, etc.

— X, ordinal: coded as (¢ — 1/2)/M (or
simply as?) fors = 1,..., M; then treated
as quantitative.

— X, categorical: specify L;,, = dg(l,m)
based on subject-matter knowledge; 0-1 loss

1s commonly used.

—wg = 1 for all £ commonly used, but it
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may not treat each variable (or attribute)
equally!
standardize each variable to have var=1.

— Distance <> similarity, e.g. sim =1 —d
Hierachical Clustering

e A dendrogram (an upside-down tree):
Leaves represent observations X;’s; each sub-
tree represents a group/cluster, and the height
of the subtree represents the degree of dissim-

ilarity within the group.

o Fig 14.12



e Bottom-up (agglomerative) algorithm

given: a set of observations { X1, ..., Xp}.

for 2 := 1 to n do

CZ = {X Z} /* each obs is initially a cluster */

C:={cy,...,cn}
7:=n+1
while |C] > 1

(Ca, cp) := argmaz,, . \stm(cu, cv)
/* find most similar pair */

C] .— Cq U Cb /* combine to generate a new cluster™/
C:=[C—{c,cp}]Uc
7:=7+1



e Similarity of two clusters
Similarity of two clusters can be defined in

three ways:

— single link: similarity of two most similar
members
sim(Ch, Co) = mazec, jec,sim(Yi, Y;)
— complete link: similarity of two least sim-
1lar members
sim(C1, Cb) = minicoy jec,sim(Yi, Y;)
— average link: average similarity b/w two
members

sim(C1, Co) = ave;eo, jecySim(Y;, Y)

e R: hclust ()



Combinatorial Algorithms

e No probability model; group observations to

min/max a criterion

e Clustering: find amapping C: {1,2,...,n} —
{1,...K}, K<n

e A criterion
1 K

Wi(C) = 2 cgl C('Z): C’(jz):c A, Xj)

o I =58 28 d(X;, X;) = W(C)+B(C),
1 K

=— > X > d(X;, X;
2 ¢=1 Cij=c C(j)c ( 2

e Min B(C') +» Max W(C)

B(C) =

e Algorithms: search all possible C' to find Cjy =

argminoW (C)
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e Only feasible for small n and K: # of possi-

ble C'’s

L K K-k
Sn,K)=— 3 (-1 C(K,k)k"
(n,K) = 1 & (~)F R, k)
E.g. S(10,4) = 34105, S(19,4) ~ 10'.
e Alternatives: iterative greedy search!

K-means Clustering

e Fach observation is a point in a p-dim space
e Suppose we know/want to have K clusters

e First, (randomly) decide K cluster centers,

My,

e Then, iterate the two steps:
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— assignment of each obs to a cluster
C(i) = argmingd(X;, M})
—new cluster center is the mean of obs’s in
each cluster
M;. = AU@C(i):kXi
e Fuclidean distance d() is used

e May stop at a local minimum for W (C'); mul-

tiple tries
e R: kmeans()
e +: simple and intuitive

e -: Kuclidean distance = 1) sensitive to out-

liers; 2) if X;; is categorical then 7
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K-medoids Clustering

e Similar to K-means; rather than using the
mean of a cluster to represent the cluster,

use an observation within it!
e First, (randomly) start with a C
e Find M = XZZ with
i = argming;.c(i—k C(jz):k d(zi, z;)
e Update C"
C(2) = argmingd(X;, M}.)
e Repeat the above 2 steps until convergence

e R: package cluster, containing pam() for

partitioning around medoids, clara() for large
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datasets with pam, silhouette() for calculat-
ing silhouette widths, diana() for divisive hi-

erarchical clustering, etc.

e Both K-means and K-medoids: not a proba-
bilistic method; “hard”, not “soft”, grouping

—> An alternative: model-based clustering
Mixture Model-based Clustering

e Assume each X is from a mixture of Normal

distributions with pdf

flz;Pp) = 5 Tr(2; por, Vi)

r=1

where ¢(x; pr, V) is the pdf of N(uy, V7).

e Fach component r is a cluster; probabilistic
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e For a fixed K, use the EM to estimate @
(to obtain MLE).

e Try various values of K = 1,2, ..., then use
AIC/BIC to select the one with the first local

minimuim.

log L(®f) = él log f(X;; Pr)
AIC = —2log L(® ) + 2vg
BIC = —2log L(® i) + v log(n)
where vy is #para. in Q.

e Or, test Hy: K = kgvs Hy: K = kg + 1;

use bootstrap
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e EM algorithm: derivation?

Given: a set of observations { X7, ..., X, }
k < —1; init 7T7(~O), ugp)’s and Vr,«(o)’s
While (not convergent) do

Forall:=1,...,nandr=1,..., K do
(k) _ mo(” i)

Tri = f(XZ-;CI)(k))
/* 7. is posterior prob Y; in component r */

(k+1) /n

k+1 L
o, ( X/
plk) _ =iy = Y (x5 pETNT

.
=17,

k< —k+1

FKach X is assigned to the component with

largest 7.
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e +: a cluster is a set of obs’s from a Normal
distribution—clear def; can model V- and thus

shape/size of clusters; probablistic

e —: why Normal?
Slow
Cluster size >= dim of Xj if no restriction on
V,, = have to do variable selection or dim

reduction if p is large

e K-means: a special case of Normal mixture

model-based clustering by assuming all V;- =
0?1
e Software: (Fortran) EMMIX or EMMIX-GENE

free at
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http:/ /www.maths.uq.edu/au/~gjm /emmix-

gene/
R: mclust package

An Example

e Ref.: Pan et al (2002, Genome Biology), data

available

e 2+4 samples (w/o + with pneumococcal in-
fection), 1176 genes of rats, radiolabeled cDNA

arrays
e Goal: detecting differential gene expression
e Clustering two-sample t-statistics

e The fitted mixture model is

A

fy: ®) = 042 % N(6.74,77.07)+



Probability
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510 % N(0.88,5.56) 4 .448 * N (—0.31,1.15).

e [ig 4
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Figure 1: Posterior probability of being in each cluster as a function of the ¢-statistic y.

Other Methods

e Hierarchical clustering: divisive (top-down)

algorithm (p. 478, 480)
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e Self-Organizing Maps: a constrained version

of K-means (section 14.4)
Practical Issues

e How to select the number of clusters? Any-
way, what is a cluster?

Stability or significance of clusters
e Any clusters?
— A global test: a parametric bootstrap

Ref: McShane et al (Bioinformatics, 2002)

— Hy: a Normal distr
or a uniform or ...7

— (optional) Principal component analysis (PCA):
use first 3 PC’s for each obs
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PC’s are orthogonal

— Under Hy, simulate data Y;? from a MVN
component-wise mean /var same as that of

the data’s PC’s
— For each obs Y]

d; is the distance from Y, to its closest

neighbor
(6) using Yi(b), b=1,...,B

similarly for d;
— (3¢ is the empirical distr func (EDF) of d;’s
Gy 1s the EDF of dgb)’s

— Test stat

up = [[Gly) — G(y)]*dy

for k=0,1,..., B, and G = 5, Gp/ B.



e Reproducibility

— Use of the bootstrap
Ref: Zhang & Zhao (FIG, 2000); Kerr &
Churchill (PNAS, 2001)

— Reproducibility indices
* Ref: McShane et al (Bioinformatics, 2002)
* Robustness (R) index and Discrepancy
(D) index
x Again, parametric bootstrap
x Y;’s: original obs’s

* Y( ) = Y;J+6§]), where e< )iid N (0, vp),

and vy = median(v.s),



v; = var(Yi, ., YiK)

* Cluster {Yj(b) 7 = 1,..., K} for each
b=1,..,B

* Find the best-matched clusters from {Yj(b)}
and {Y;},

x For each paired clusters, r,(fb> =proprotion
of pairs of obs’s in both clusters (i.e kth
clusters)

(b)

* R 1s an average of 7. "’s

x ) is an avarege of proportions of pairs
of obs’s not in the same cluster

*x Note: Finding best-matched clusters may

not be easy
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e Determine # of clusters

—In general, a tough problem; many many

methods

— Ref: Tibshirani et al (2002), “Clustering
validation by prediction strength”. Sta-
tistica Sinica.

ret’s therein
— Clustering and classification

— Main idea: suppose we have a training
dataset and a test dataset; comparing the
agreement b/w the two clustering results;

k = ko will give the best agreement

1) Cluster the test data into k clusters;
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2) Cluster the training data into k clusters;

3) Measure how well the training set cluster
centers predict c-membership in the test

set.

x Fig 1
— Define “prediction strength”:

1
k) = mi I(D[C(Xp, k), Xpolir = 1
P = I ey — ) s, i) i =)

where Ay ;: test obseravtions in test clus-
ter 7, and ng,; = |Ag,|; D|C(.,.), X] is a
matrix with 4¢’th element D[C(.,.), X]. .

11

1 if obs’s 4 and ¢’ fall into the same cluster
in C', and =0 o/w.
— Choice of k: largest k such that ps(k) >

PSo.



psp: 0.8-0.9
ps(1) =1
— Fig 2
— In practice, use repeated 2-fold (or 5-fold)

cross-validation

e Other criteria

— Let B(k) and W (k) be the between- and

within-cluster sum of squares

— Calinski & Harabasz (1974):
; B(k)/(k —1)
k = argmax;

W(k)/(n — k)
note: C'H(1) not defined.
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— Hartigan (1975):

W(k)/W(k+1)—1
n—Fk—1

k: smallest k > 1 such that H(k) < 10.

H(k) =

— Krzanowski & Lai (1985):

DIFF(k)
DIFF(k+1)
where DIFF(k) = (k — 1)2/PW,_; —

k)z/ka, p is the dim of an obs.

A

k = argmax;

— Gap stat (Tibshirani et al, JRSS-B, 2001)
* Motivation: as k increases, Wp. ...7
Fig 1
x Gap(k) = E*|log(Wy.)|—log(W},), where
E™ is expectation under a reference dis-

tribution (e.g. uniform).
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x Algorithm:
Step 1. Cluster the observed data and obtain Wy,
k=1,... kna
Step 2. Generate B reference data sets (e.g. us-
ing the uniform distr), and obtain Wlim,
b=1,...,Band k=1,..., knar.
Compute the gap stat

Gap(k) = log(IW);, — log(1T})

where log(W),. = 5 log(ngb))/B.
Step 3. Compute SD

sdj, = %[bg(Wng)) — log(W),]*/B

and define s = sdy1 + 1/B.
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Step 4. Choose a smallest £ such that
Gap(k) < Gap(k +1) — sp.41
* Fig 2
— Use of bagging: Dudoit & Fridlyand (Genome

Biology, 2002)

more ref’s
e Assessing clustering results

— Define a; = average dissimilarity between
obs 7 and all other obs’s of the cluster to

which obs 2 belong:;

— For all other clusters A, d(¢, A) = average
dissimilarity of obs ¢ to all obs’s of cluster

A.

)



—b; = min4d(i, A)

— Silhouette width: s; = —2i-%

maz(a;,b;)

—a large s; = obs ¢ is well clustered; a
small s; (close to 0) = obs i lies between
two clusters; a negative s;, = obs 7 is

probably in a wrong cluster.



