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Outline

» Causal inference in the presence of hidden confounding
» Instrumental variable (IV) regression: 2SLS
» Mendelian randomization (MR)
> Network deconvolution (ND)
» DeeplV

» Causal inference without confounding

» Counterfactual model
» Standard approaches

» New (ML) approaches
» Causal trees and forests



Chocolate consumption vs Nobel prize winning: Messerli
2012, NEJM
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Chocolate consumption vs Nobel prize winning: flavanoids?
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Introduction: motivation

Adam, D. (2019). The gene-based hack that is revolutionizing
epidemiology: Mendelian randomization offers a simple way to
distinguish causation from correlation. But are scientists overusing

it?
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v

Nature, 576:196-199.

Limitations of epi/observational/association studies =
Failures of multiple $100-million trials!

Causal inference!

MR: causal inf with observational data

Easy to use: wide availability of GWAS summary data
Magic? No! Strong modeling assumptions...

Boef (2015, /JE): 178 published, < 1/2 "adequately discussed
these assumptions”

“Statistical tools for epidemiology are improving. And
although Mendelian randomization does not always offer
perfect clarity, it might, at least, point researchers in the right
direction.”



Introduction: IV reg and MR

» MR: a special application of instrumental variable (IV) reg.
2S-2SLS
using (indep) genetic variants/SNPs as Vs
GWAS summary data
Bowden, Burgess, Davey Smith, ....;

» |V reg for causal inference
Angrist, Imbens won a half of the 2021 Nobel Prize in
Economics:
Angrist, J.D. and G.W. Imbens (1995). “Two-stage least
squares estimation of average causal effect in models with
variable treatment intensity.” JASA, 90(430): 431-442.
Angrist, J.D., G.W. Imbens, and D.B. Rubin (1996).
“Identification of causal effects using instrumental variables.”
JASA, 91: 444-472.
Imbens, G.W. and J.D. Angrist (1994). “Identification and
estimation of local average treatment effects.” Econometrica,
61: 467-476.



IV reg: Basic ldea
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True causal model:
X = ZBx + UBxy + €, Y = X0+ UByy + €.

0: parameter of interest; e.g., Hp: 6 = 0.

Key challenge: hidden confounder U

— 0 biased in Y ~ X.

Why?

2-Stage Least Square (2SLS): under 3 valid IV assumptions,

E(Y|Z) = 0E(X|Z) =

Stage 1: X = ZBX,

Stage 2: Y = X0 + ey.

Cnnsistent and AN (but low efficiency)!

a Key feature: 2-sample 2SLS,

can infer 6 with two independent samples {(Z;, X;)}'s and

{(Zi, Yi)}s!



MR: Basic Idea

» MR: consider one IV,
X = ZiBxi + ex, Y =X0+ey =Zifyi + ey

Key: By; = Bxif
» MR: under the 3 valid IV assumptions, § = By;/f3x; unbiased,
consistent, AN, ...

> Byi, Bxi (and 6%, 6%;) directly available from two indep
GWAS summary datasets.

» If multiple indept IVs, combine by meta-analysis: IVW(FE), ...



Assumptions
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Figure: (A) Three assumptions for valid 1Vs. (B) Our causal model.

» Violation of A2: uncorrelated pleiotropy; Bx; = 7, @; uncor.
> Violation of A3: correlated pleiotropy;

Bxi = i + ¢iBxu, ai + ¢iPyy correlated —>
violation of InSIDE required by MR-Egger, IVW(RE), RAPS

(treating «j random).



MR vs RCT

Randomized Controlled Trial (SELECT) Mendelian Randomization
‘ Randomization method ‘ I | Random segregation of alleles ‘
Exposed: Selenium Control Exposed: Higher Control:

supplementation Placebo selenium alleles Reference alleles
Plasma selenium Plasma selenium : Plasma selenium Plasma selenium

+ 114 pg/L {Baseline) + 114 ug/L (Baseline)

Confounders equal Confounders equal
between groups between groups

Prostate cancer risk:
HR 1.04 (95% CI 0.91-1.19)

Prostate cancer risk:
OR 1.01 (95% CI10.89-1.13)

Figure: Yarmolinsky, James, et al. " Circulating selenium and prostate cancer risk: a
Mendelian randomization analysis.” JNCI: Journal of the National Cancer Institute
110.9 (2018): 1035-1038.



UVMR-cML (Xue, Shen and Pan (2021, AJHG)

» Key: relax Assumptions (Al), A2 & A3.
» A more general (true causal) model:

Bxi = i+ Bxu- i,

Byi = 0-(vi+Bxu-oi)+ai+Pyu-¢i=0-Bxi+ri,
> From the GWAS data: fx; ~ N(Bx;, 6%;) and

Byi ~ N(Byi,6%;) for i =1,--- ,m. All indep

> Log-likelihood:

zm: ( /BXI /BXI (/BYI —0- BX/ - rl)2> 7

=1 UXI UYI

» Constrained maximum likelihood (cML):

max L subject to Z I(r; #0) =
i=1

> Try K=0,1,2,...,m — 2, then use BIC to select K.
> A sequential algorithm: fast but ...



Theory

» Assumption 1: (Plurality valid condition.) Suppose that By is
the index set of the true valid 1Vs with Ko = |Bp|. For any
B C{1,---,m} and |B| = Ky, if B # By, then the Kj ratios
{Byi/Bxi,i € B} are not all equal.

» Note: valid IVs: By;/Bxi = 6;
invalid 1Vs: ﬁy;/ﬁx,' =0+ r,'/ﬁx,' #40.

» Assumption 2: (Orders of the variances and sample sizes.)
There exist positive constants Ix, ly, Iy and ux, uy, uy such
that we have /X/Nl < 5’?« < Ux/Nl, /y/N2 < 6’%4 < Uy/NQ,
and /N-N2 < N1 < UN-N2 forizl,--~ ,m.

» Note: usually satisfied, e.g. with LSE or MLE.



Theory

Theorem 1: (Selection consistency.) With Assumptions 1 and
2 satisfied, if Ko € K, we have P(K = Kp) — 1 and

'D(ék = Bg) — 1 as Nl, N2 — Q.

Theorem 2. (Consistency and AN.) With Assumptions 1 and
2 (and some regularity conditions), the cMLE 0 is consistent
and asymptotically normal.

Note: similar to the theory in RAPS (Zhao et al 2020, AoS).
Only valid Vs are used.

Allowing the presence of weak Vs (i.e. Al violated).
similar to RAPS.

Theorem 3. (DP/bootstrap is consistent.)



Finite-sample adjustments
» Model averaging (MA) (Buckland et al 1997, B'cs):

w2 = exp (—BIC(K)/2), wx = WP(/Z wy,
Kek

Ou = wic - 6(K), SE(dy) = ...

> Data perturbation (DP): or, parametric bootstrap,

ﬁx: ~ N(ﬁx,,axl) and Bg,tl) ~ N(By,,ayl) fori=1,.
obtain 0()(K) for t =1,2,..., T.

N T 4@ N o
op() = 2= 22D e (o k) = D0 ()Y,

then apply MA (optional): ......
Bagging (Breiman 1996 ML; Efron 2014 JASA).



Simulations

Compared with most state-of-the-art MR methods;
As expected, ...



Simulation results:
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Applications:
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Extensions/alternatives

| 2

>

>

UVMR-cML-C: allowing overlapping samples (Lin, Xue and
Pan 2023, PLOS Genet);

MVMR-cML: allowing multiple exposures (Lin, Xue and Pan
2023, AJHG)

Next: apply UVMR-cML-C and ND to infer (general) causal
networks.

allowing cycles; data from different and possibly overlapping
samples.

A limitation: assuming the causal direction is known.
bi-directional MR

Steiger's method (Hemani et al 2017, PLoS Genet):
Lemma. If Z — X — Y and no hidden confounders, then
corr(Z,X) > corr(Z,Y).

With hidden confounders, it may not always hold;

Only working for one IV.

Xue & Pan (2020, PLoS Genet): extending to multiple IVs.
Xue & Pan (2022, PLoS Genet): Bi-directional CD-cML (and
MR-cML).



Network deconvolution (ND)

» Feizi et al (2013, Nat Biotechnol.)

» Q: given a total-causal-effect graph G;, how to estimate the
direct-causal-effect graph G47?

Gt = Gy+G24-G3+.... = Gg(I+Gy+G3+Ga+...) = Gy(1—Gy)™?

if p(Gd) < 1.
Hence, Gy = G:(I + G;)*.

» MR-cMLgraph (Lin, Xue and Pan, 2023, PLOS Genet): use
MR-cML to construct @t, then use ND to obtain
éd = GAt(I + ét)_l.

» Theory: vec(G:) and vec(Gy) are consistent and AN.

» Can use data perturbation for inference.



Application: BMI might be a ‘minor’ risk factor for CAD,

but an indep one for AF

Figure: Total (left) and direct (right) causal graphs




ND: continued

» Derivation is for a directed graph; how about for an
undirected graph?

» Let > be an invertible correlation matrix among a set of
variables of interest. If Gy =%~ — [, then G4 = | — Q, where
Q = Y1 is the precision matrix.
Alipanahi and Frey (2013, Nature Biotechnol).

» Lior Pachter. The network nonsense of manolis kellis, February
2014. https://liorpachter.wordpress.com/2014/02/
11/the-network-nonsense-of-manolis-kellis/.


https://liorpachter.wordpress.com/2014/02/11/the-network-nonsense-of-manolis-kellis/
https://liorpachter.wordpress.com/2014/02/11/the-network-nonsense-of-manolis-kellis/

DeeplV

» True model:
X =Za+ U+ ey, Y:g(X)+U+€y

» Again fitting Y ~ X leads to biased estimate of g() due to
hidden confounding!

> E(Y|Z) = Elg(X)|Z].
» DeeplV (Hartfford et al 2017, ICML): use a FNN gp(.),

0 = arg m|n Z[Y / x)dF (x| Z)]? + P(6; \),

» Slow: need to use MC sampling, A
J go(x)dF(x1Z;) = 11 go(Xy), Xy ~ F(x|Z).

» Unstable: ill-posed inverse problem; Fredholm integral
equation of the first kind (Newey 2013, Am Econ Rev).



Discussion

» Alternative: DeLIVR (He et al 2023, Biostatistics).
» Several new IV deep learning methods...

» An application: causal feature extraction (Yao et al 2023, Stat
in Med).



DeLIVR

>

Stage 2 model: E(Y|Z) = E[g(X)|Z)
Problem: estimating g(X).

Key: E[g(X)|Z) = h(uz) # g(nz), nz = E(X|2).
New: estimating E[g(X)|Z) = h(uz),

Assuming X|Z ~ N(puz,0?).

Would this address the original Q?

Proposition. Suppose X|Z ~ N(uz,0?), and g(X) is a
univariate function in X (and independent of p7), then
1. g(X) = c, a constant, if and only if E(g(X)|Z) = c.

2. g(X) is linear in X if and only if E(g(X)|Z) is linear in pz.
3. g(X) is a k-th degree polynomial in X if and only if
E(g(X)|Z) is a k-th degree polynomial in uz.
More generally, if g(X) is locally smooth, by a Taylor
expansion, ...

DeLIVR: estimating an ANN hy(.) for h(.).

Inference: use independent training and inference subsamples



Simulation results: DeLIVR more stable than DeeplV
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From MRI to AD prediction

/Sé’ftmax((ixl)
/(CN/MCI/AD)

Feature(100x1)+
conv(256@3x3x3)+ Dense+Dropout (.3)
MP(2x2x2)+BN  GA Pool+
conv(128@3x3x3) 4 Dense(256)+

MP(2x2x2)+BN Dropout(.3)
conv(64@3x3x3)+

MP(2x2x2)+BN
conv(64@3x3x3)+ L

MP(2x2x2)+BN

Figure: CNN.



DeepFEIVR

» Deep Feature Extraction via IV Regression (DeepFEIVR).
X: image; Z: SNPs/IVs; Y: AD status.
» Model:

v

f(X)=2B+ U+ ex, Y =f(X)B+ U+ey

> Key Hp: B =0.
Key challenge: hidden confounder U
» 2SLS-like:

v

f(X)= 2B, Y =F(X)B+ey =ZBB +ey

» Contrast to existing nonparametric 1V, e.g. deeplV and
DelLIVR:

X =2ZB+ U+ ex, Y=Ff(X)+U+ey



Network architectures

X (192, 192, 160, 3)

CONV (16@3 X 3 X 3) +

ReLU+MP (2 X 2 X 2) +BN

CONV (64@3 X 3 X 3) +

« || — |«

ReLU +MP (2 X 2 X 2) + BN

CONV (128@3 X 3 X 3) +
ReLU+MP (2 X 2 X 2) +BN

CONV (256@3 X 3 X 3) +
ReLU +MP (2 X 2 X 2) + BN

GAP+FC(256) + ReLU+
Dropout(0.3) + FC(128) +
ReLU + Dropout(0.3) + BN +
FC(20) + LeakyRelLU(0.3)

fo

fo(X)

FC (1)

(a) a direct CNN model

fo(X)

Proj + FC (1)

(b) DeepFEIVR



Second part: No (hidden) confounding

» Data: D = {(X1, T1, Y1)y...,(Xn, Tn, Yn)}. Ti=0o0r 1.
Goal: any trt effects?

» Counterfactual model:
Yi(1) and Y;(0) are the responses if individual i is and is not
given the treatment, respectively.
But we can NOT observe both Y;(1) and Y;(0)!

» Unconfoundedness: T; L (Yi(1), Yi(0))|X;
» individual treatment effect (ITE):

(x) = E[Yi(1)|X; = x] — E[Y;(0)|X; = x]
= E[Yi(1)|Ti =1,X = x] — E[Yi(0)| T; = 0, X; = x]
— E[YiITi =1,X = x] - E[Y]|T; = 0,X; = ],
> average treatment effect (ATE):

7 == E[Y(1) = Yi(0)] = E[r(X)].
Note: E[Y(T =1) — Y(T =0)] # 7 in general; why?



Standard approaches
» Old(?) approach: regression!

E[Y|T =t,X =x] =t + X8,

which can be fitted using data
D= {(X,‘, T,', Y,) = ].7 ceey n}.
Why reasonable? no hidden confounding!
> But it requires ... especially for high-dim data.
» Most popular alternative: Propensity Scores (PS)
PS(X,) = PF(T,' = 1|X,').
» Rosenbaum and Rubin (1983, Biometrika):
Ti L (Yi(1), Yi(0))| PS(X;).
» Using (Xi, T;)'s to fit

Logit(Pr(T = 1|X)) = X'a,

= e = PS(X;) = Logit }(X/&).
» Often trim out observations with too small or too large €; (i.e.
outliers).



PS

PS regression: fit
E[Y|T =t,X =x] =t0+ PS(x)y

using data D.

PS matching:

matching each obs with T; = 1 with one (or more) with
T; = 0 by their ¢;'s, then analysis on matched sets.

PS stratification:

partitioning the data into subsets/strata based on the
distribution of ¢;’s, then stratified analysis.

Inverse probability weighting:

each obs is assigned a weight w; = 1/¢; if T; = 1;

w; = 1/(1 — ¢) if T; = 0; then a weighted analysis, e.g.

c = 2 iT=1 Wi Yi B 2t WiYi

P = V(T = D)=V (T =0) = S0 - SEh e,
i T;=1""1 i: ;=0 "1

But ...



New approaches

P Dorie et al (2019). Automated versus Do-It-Yourself Methods for
Causal Inference: Lessons Learned from a Data Analysis
Competition. Stat Sci.

» Simulated data; no hidden confounders,..., as for PS.
Standard ones: both PS and (regression) mean response
modeled by GLMs;
how about by ML?

P> Five competition winners:

>
>

>

v

BART,;

Superlearner 4+ Targeted MLE: ensemble of glm, gbm, gam,
glmnet and splines;

calCause: RF or GP by CV;

h20.ai: ensemble of glm, RF, DL (NN), LASSO and ridge reg;
GBM + MDIA.



Counterfactual RF

>

>

Lu et al (2018). Estimating Individual Treatment Effect in
Observational Data Using Random Forest Methods. JCGS.

M1: C-RF: build two RFs, f(X) and %(X), using the subsamples of
T; =1 and T; = 0 respectively; then for each X; = x € D, run

~

#(x) = h(x) — h(x).

better to use the OOB estimate...

Or, M2: #(x) = RF(x,1) — RF(x,0), where RF(X, T) is built using
all data (X;, T;, Y;)'s.

Model/assumption: Y; = f(T;, X;) + €;,

In contrast to M1: Y; = f,(X;) +¢; for T; = t.

Or, M3: 7(x) = RF(x,1) — RF(x,0), where RF(X, T) is built using
all data (X;, T;, Xi = T;, Yi)'s.

In analogy, in linear reg:

M1: Y; = X/Bo + ¢ for T; =0; Yi = X/51 + ¢ for T; = 1.

M2: Y; = T:0+ X0 +¢.

M3: Y; = T:0+ X!B+ (X; * T;)d + €.



Causal

>

>

trees

Ref: Athey and Imbens (2016). Recursive partitioning for
heterogeneous causal effects. PNAS.

Goal: partition the data into different subpopulations each
with a (alomost) homogeneous treatment effect.
Key idea: similar to CART, but do “honest” estimation: using
two independent data subsets for partitioning and parameter
estimation.
1. Use an independent D®t, instead of D', to estimate leaf
means;
2. Modify the splitting (and CV) criterion to have an unbiased
MSE estimator for the causal treatment effect;
“fundamental problem of causal inference”: the causal effect is
not observed.
3. Account for increasing variance with tree growing.

Use another independent sample for inference.
Causal forests (Athey and Wager 2019).



Review: CART for regression

v

Y': continuous.
» Key: 1) determin splitting variables and split points (e.g.
xj < tj); = Ri, Ro, ...;
2) determine ¢, in each Ry,.
» in 1), use a sequential or greedy searchfor each j and s: find
xj < s s.t.
Ri(U,s) = {xIx < s}, Ra(U,s) = {x|x; > s},
min; s[ming, 3 x.cp,(j,5)(Yi—c1)?+ming Y x cg,(j.s)(Yi—c2)?]:
» in 2), given Ry and Ry,
&k = AVG(Y,"X,' S Rk} for k =1,2.

P Repeat the process on Ry and R» respectively, ...



