Causal machine learning

Wei Pan

Division of Biostatistics and Health Data Science, School of Public Health,
University of Minnesota, Minneapolis, MN 55455
Email: panxx014@umn.edu

PubH 8475/Stat 8056

Outline

- Causal inference in the presence of hidden confounding
 - Instrumental variable (IV) regression: 2SLS
 - Mendelian randomization (MR)
 - Network deconvolution (ND)
 - DeepIV
- Causal inference without confounding
 - Counterfactual model
 - Standard approaches
 - ► New (ML) approaches
 - Causal trees and forests

Chocolate consumption vs Nobel prize winning: Messerli 2012, NEJM

Chocolate consumption vs Nobel prize winning: flavanoids?

Figure: Fig 1 in Maurage et al 2013, J Nutrition.

Introduction: motivation

Adam, D. (2019). The gene-based hack that is revolutionizing epidemiology: Mendelian randomization offers a simple way to distinguish causation from correlation. But are scientists overusing it? *Nature*, 576:196-199.

- ► Limitations of epi/observational/association studies ⇒
- ► Failures of multiple \$100-million trials!
- Causal inference!
- MR: causal inf with observational data
- Easy to use: wide availability of GWAS summary data
- Magic? No! Strong modeling assumptions...
- ▶ Boef (2015, *IJE*): 178 published, < 1/2 "adequately discussed these assumptions"
- ► "Statistical tools for epidemiology are improving. And although Mendelian randomization does not always offer perfect clarity, it might, at least, point researchers in the right direction."

Introduction: IV reg and MR

- MR: a special application of instrumental variable (IV) reg. 2S-2SLS using (indep) genetic variants/SNPs as IVs GWAS summary data Bowden, Burgess, Davey Smith,;
- ► IV reg for causal inference Angrist, Imbens won a half of the 2021 Nobel Prize in Economics:

Angrist, J.D. and G.W. Imbens (1995). "Two-stage least squares estimation of average causal effect in models with variable treatment intensity." *JASA*, 90(430): 431-442. Angrist, J.D., G.W. Imbens, and D.B. Rubin (1996). "Identification of causal effects using instrumental variables." *JASA*, 91: 444-472.

Imbens, G.W. and J.D. Angrist (1994). "Identification and estimation of local average treatment effects." *Econometrica*, 61: 467-476.

IV reg: Basic Idea

True causal model:

$$X = Z\beta_X + U\beta_{XU} + \epsilon_X^*, \qquad Y = X\theta + U\beta_{YU} + \epsilon_Y^*.$$

- θ : parameter of interest; e.g., H_0 : $\theta = 0$.
- ► Key challenge: **hidden** confounder U $\Longrightarrow \hat{\theta}$ **biased** in $Y \sim X$. Why?
- 2-Stage Least Square (2SLS): under 3 valid IV assumptions,

$$E(Y|Z) = \theta E(X|Z) \Longrightarrow$$

- Stage 1: $\hat{X} = Z\hat{\beta}_X$, Stage 2: $Y = \hat{X}\theta + \epsilon_Y$. Cnnsistent and AN (but low efficiency)!
- ▶ a Key feature: 2-sample 2SLS, can infer θ with two independent samples $\{(Z_i, X_i)\}$'s and $\{(Z_i, Y_i)\}$'s!

MR: Basic Idea

MR: consider one IV,

$$X = Z_i \beta_{Xi} + \epsilon_X,$$
 $Y = X\theta + \epsilon_Y^{**} = Z_i \beta_{Yi} + \epsilon_Y$

Key: $\beta_{Yi} = \beta_{Xi}\theta$

- MR: under the 3 valid IV assumptions, $\hat{\theta} = \hat{\beta}_{Yi}/\hat{\beta}_{Xi}$ unbiased, consistent, AN, ...
- $\hat{\beta}_{Yi}, \hat{\beta}_{Xi}$ (and $\hat{\sigma}_{Yi}^2, \hat{\sigma}_{Xi}^2$) directly available from two indep GWAS summary datasets.
- ▶ If multiple indept IVs, combine by meta-analysis: IVW(FE), ...

Assumptions

Figure: (A) Three assumptions for valid IVs. (B) Our causal model.

- ▶ Violation of A2: uncorrelated pleiotropy; $\beta_{Xi} = \gamma_i, \alpha_i$ uncor.
- Violation of A3: correlated pleiotropy; $\beta_{Xi} = \gamma_i + \phi_i \beta_{XU}, \alpha_i + \phi_i \beta_{YU}$ correlated \Longrightarrow violation of InSIDE required by MR-Egger, IVW(RE), RAPS (treating α_i random).

MR vs RCT

Figure: Yarmolinsky, James, et al. "Circulating selenium and prostate cancer risk: a Mendelian randomization analysis." JNCI: Journal of the National Cancer Institute 110.9 (2018): 1035-1038.

UVMR-cML (Xue, Shen and Pan (2021, AJHG)

- ► Key: relax Assumptions (A1), A2 & A3.
- ► A more general (true causal) model:

$$\beta_{Xi} = \gamma_i + \beta_{XU} \cdot \phi_i,$$

$$\beta_{Yi} = \theta \cdot (\gamma_i + \beta_{XU} \cdot \phi_i) + \alpha_i + \beta_{YU} \cdot \phi_i = \theta \cdot \beta_{Xi} + r_i,$$

- From the GWAS data: $\hat{\beta}_{Xi} \sim N(\beta_{Xi}, \hat{\sigma}_{Xi}^2)$ and $\hat{\beta}_{Yi} \sim N(\beta_{Yi}, \hat{\sigma}_{Yi}^2)$ for $i = 1, \dots, m$. All indep
- Log-likelihood:

$$L = -\frac{1}{2} \sum_{i=1}^{m} \left(\frac{(\hat{\beta}_{Xi} - \beta_{Xi})^2}{\hat{\sigma}_{Xi}^2} + \frac{(\hat{\beta}_{Yi} - \theta \cdot \beta_{Xi} - r_i)^2}{\hat{\sigma}_{Yi}^2} \right),$$

► Constrained maximum likelihood (cML):

$$\max L$$
 subject to $\sum_{i=1}^{m} I(r_i \neq 0) = K$.

- ► Try K = 0, 1, 2, ..., m 2, then use BIC to select \hat{K} .
- A sequential algorithm: fast but ...

Theory

- Assumption 1: (Plurality valid condition.) Suppose that B_0 is the index set of the true valid IVs with $K_0 = |B_0|$. For any $B \subseteq \{1, \cdots, m\}$ and $|B| = K_0$, if $B \neq B_0$, then the K_0 ratios $\{\beta_{Yi}/\beta_{Xi}, i \in B\}$ are not all equal.
- Note: valid IVs: $\beta_{Yi}/\beta_{Xi} = \theta$; invalid IVs: $\beta_{Yi}/\beta_{Xi} = \theta + r_i/\beta_{Xi} \neq \theta$.
- Assumption 2: (Orders of the variances and sample sizes.) There exist positive constants I_X, I_Y, I_N and u_X, u_Y, u_N such that we have $I_X/N_1 \le \hat{\sigma}_{Xi}^2 \le u_X/N_1$, $I_Y/N_2 \le \hat{\sigma}_{Yi}^2 \le u_Y/N_2$, and $I_N \cdot N_2 \le N_1 \le u_N \cdot N_2$ for $i = 1, \dots, m$.
- Note: usually satisfied, e.g. with LSE or MLE.

Theory

- ▶ Theorem 1: (Selection consistency.) With Assumptions 1 and 2 satisfied, if $K_0 \in \mathcal{K}$, we have $P(\hat{K} = K_0) \to 1$ and $P(\hat{B}_{\hat{K}} = B_0) \to 1$ as N_1 , $N_2 \to \infty$.
- Theorem 2. (Consistency and AN.) With Assumptions 1 and 2 (and some regularity conditions), the cMLE $\hat{\theta}$ is consistent and asymptotically normal.
 - Note: similar to the theory in RAPS (Zhao et al 2020, AoS). Only valid IVs are used.
- Allowing the presence of weak IVs (i.e. A1 violated). similar to RAPS.
- ▶ Theorem 3. (DP/bootstrap is consistent.)

Finite-sample adjustments

Model averaging (MA) (Buckland et al 1997, B'cs):

$$\begin{split} w_K^0 &= \exp\left(-\mathsf{BIC}(K)/2\right), \ w_K = w_K^0 / \sum_{K \in \mathcal{K}} w_K^0, \\ \hat{\theta}_w &= \sum_{K \in \mathcal{K}} w_K \cdot \hat{\theta}(K), \qquad \mathsf{SE}(\hat{\theta}_w) = \dots \end{split}$$

Data perturbation (DP): or, parametric bootstrap, $\hat{\beta}_{Xi}^{(t)} \sim \mathcal{N}(\hat{\beta}_{Xi}, \hat{\sigma}_{Xi}^2) \text{ and } \hat{\beta}_{Yi}^{(t)} \sim \mathcal{N}(\hat{\beta}_{Yi}, \hat{\sigma}_{Yi}^2) \text{ for } i = 1, ..., m$ obtain $\hat{\theta}^{(t)}(K)$ for t = 1, 2, ..., T.

$$\hat{\theta}_{DP}(K) = \frac{\sum_{t=1}^{T} \hat{\theta}^{(t)}(K)}{T}, \qquad \mathsf{SE}\left(\hat{\theta}_{DP}(K)\right) = \mathsf{SD}(\{\hat{\theta}^{(t)}(K)\}).$$

then apply MA (optional): Bagging (Breiman 1996 *ML*; Efron 2014 *JASA*).

Simulations

Compared with most state-of-the-art MR methods; As expected, ...

Simulation results:

Applications:

	Asthma				CAD				Stroke				T2D			
Alcohol	₹	v	*	٠		4			۵	Δ	۵	٨	Δ	۵	4	
BF	Δ	۵	۵	4	•		A		٧	Δ	۵	٧	A	۵	A	Δ
ВМІ	Δ	۵	۵	Δ	•	<u></u>	A	•	Δ	۵	۵	۵	A	Δ	Δ	•
BW	Δ	۵	4	4	•	▽	٠	▽	∇	v	٧	٠	•	٧	٠	•
DBP	Δ	۵	₹	۵	•	<u></u>	A	•	A	Δ	A	A	A	Δ		•
FG	▽	٠	٠	٧	•		A	Δ	Δ	Δ	٧	۵	A	Δ	A	Δ
HDL	Δ	۵	۵	٧	•	•	•	•	7	7	*	*	▽	₩	¥	▽
Height	٧	٧	٧	٠	•	•	•	•	٧	v	۵	▽	٧	۵	4	٠
LDL	۵	v	▼	۵	•	<u></u>	A	•	•	Δ	Δ	A	•	v	٧	•
SBP	Δ	Δ	٧	Δ	•	<u></u>	A	•	•	•	A	A	•	Δ	Δ	•
Smoke	Δ	۵	٨	•	•	<u></u>	A	•	•	Δ	۵	A	Δ	4	₹	
TG	▽	V	v	▽	•		A	•	٧	Δ	Δ	٧	Δ	۵	4	

▲ cML-MA-BIC

▲ MR-CAUSE

▲ MR-Mix

▲ MR-IVW

□ Causal ♥ □ Correlated Δ ←
□ Unrelated
□ Non-causal

Extensions/alternatives

- UVMR-cML-C: allowing overlapping samples (Lin, Xue and Pan 2023, PLOS Genet);
- MVMR-cML: allowing multiple exposures (Lin, Xue and Pan 2023, AJHG)
- Next: apply UVMR-cML-C and ND to infer (general) causal networks.
 allowing sycles; data from different and possibly everlapping
 - allowing cycles; data from different and possibly overlapping samples.
- ▶ A limitation: assuming the causal direction is known. bi-directional MR
- Steiger's method (Hemani et al 2017, *PLoS Genet*): **Lemma.** If $Z \to X \to Y$ and no hidden confounders, then corr(Z, X) > corr(Z, Y). With hidden confounders, it may not always hold;
- Only working for one IV.

 Xue & Pan (2020, *PLoS Genet*): extending to multiple IVs.
- ➤ Xue & Pan (2022, *PLoS Genet*): Bi-directional CD-cML (and MR-cML).

Network deconvolution (ND)

- ► Feizi et al (2013, Nat Biotechnol.)
- ▶ Q: given a total-causal-effect graph G_t , how to estimate the direct-causal-effect graph G_d ?

$$G_t = G_d + G_d^2 + G_d^3 + \dots = G_d(I + G_d + G_d^2 + G_d^3 + \dots) = G_d(I - G_d)^{-1}$$
 if $\rho(G_d) < 1$.
Hence, $G_d = G_t(I + G_t)^{-1}$.

- MR-cMLgraph (Lin, Xue and Pan, 2023, *PLOS Genet*): use MR-cML to construct \hat{G}_t , then use ND to obtain $\hat{G}_d = \hat{G}_t (I + \hat{G}_t)^{-1}$.
- ▶ Theory: $vec(\hat{G}_t)$ and $vec(\hat{G}_d)$ are consistent and AN.
- Can use data perturbation for inference.

Application: BMI might be a 'minor' risk factor for CAD, but an indep one for AF

Figure: Total (left) and direct (right) causal graphs

ND: continued

- Derivation is for a directed graph; how about for an undirected graph?
- Let Σ be an invertible correlation matrix among a set of variables of interest. If $G_t = \Sigma I$, then $G_d = I \Omega$, where $\Omega = \Sigma^{-1}$ is the precision matrix. Alipanahi and Frey (2013, Nature Biotechnol).
- ► Lior Pachter. The network nonsense of manolis kellis, February 2014. https://liorpachter.wordpress.com/2014/02/11/the-network-nonsense-of-manolis-kellis/.

DeepIV

True model:

$$X = Z\alpha + U + \epsilon_X,$$
 $Y = g(X) + U + \epsilon_Y$

- Again fitting $Y \sim X$ leads to biased estimate of g() due to hidden confounding!
- E(Y|Z) = E[g(X)|Z].
- ▶ DeepIV (Hartfford et al 2017, ICML): use a FNN $g_{\theta}(.)$,

$$\hat{\theta} = \arg\min_{\theta} \sum_{i=1}^{n} [Y_i - \int g_{\theta}(x) dF(x|Z_i)]^2 + P(\theta; \lambda),$$

- Slow: need to use MC sampling, $\int g_{\theta}(x)dF(x|Z_{i}) \approx \sum_{i=1}^{M} g_{\theta}(X_{ij}), \qquad X_{ij} \sim \hat{F}(x|Z_{i}).$
- Unstable: ill-posed inverse problem; Fredholm integral equation of the first kind (Newey 2013, Am Econ Rev).

Discussion

- ▶ Alternative: DeLIVR (He et al 2023, Biostatistics).
- Several new IV deep learning methods...
- An application: causal feature extraction (Yao et al 2023, Stat in Med).

DeLIVR

- Stage 2 model: E(Y|Z) = E[g(X)|Z)Problem: estimating g(X).
- ▶ **Key**: $E[g(X)|Z) = h(\mu_Z) \neq g(\mu_Z)$, $\mu_Z = E(X|Z)$.
- New: estimating $E[g(X)|Z) = h(\mu_Z)$, Assuming $X|Z \sim N(\mu_Z, \sigma^2)$.
- Nould this address the original Q? Proposition. Suppose $X|Z \sim N(\mu_Z, \sigma^2)$, and g(X) is a univariate function in X (and independent of μ_Z), then
 - 1. g(X) = c, a constant, if and only if E(g(X)|Z) = c.
 - 2. g(X) is linear in X if and only if E(g(X)|Z) is linear in μ_Z .
 - 3. g(X) is a k-th degree polynomial in X if and only if E(g(X)|Z) is a k-th degree polynomial in μ_Z .
- More generally, if g(X) is locally smooth, by a Taylor expansion, ...
- ▶ DeLIVR: estimating an ANN $h_{\theta}(.)$ for h(.).
- Inference: use independent training and inference subsamples

...

Simulation results: DeLIVR more stable than DeepIV

From MRI to AD prediction

Figure: CNN.

DeepFEIVR

- Deep Feature Extraction via IV Regression (DeepFEIVR).
- ► X: image; Z: SNPs/IVs; Y: AD status.
- ► Model:

$$f(X) = ZB + U + \epsilon_X,$$
 $Y = f(X)\beta + U + \epsilon_Y$

- ▶ Key H_0 : $\beta = 0$.
- ightharpoonup Key challenge: **hidden** confounder U
- ► 2SLS-like:

$$\hat{f}(X) = Z\hat{B}, \qquad Y = \hat{f}(X)\beta + \epsilon_Y = Z\hat{B}\beta + \epsilon_Y$$

Contrast to existing nonparametric IV, e.g. deepIV and DeLIVR:

$$X = ZB + U + \epsilon_X,$$
 $Y = f(X) + U + \epsilon_Y$

Network architectures

Second part: No (hidden) confounding

- ▶ Data: $D = \{(X_1, T_1, Y_1), ..., (X_n, T_n, Y_n)\}$. $T_i = 0$ or 1. Goal: any trt effects?
- Counterfactual model: $Y_i(1)$ and $Y_i(0)$ are the responses if individual i is and is not given the treatment, respectively. But we can NOT observe both $Y_i(1)$ and $Y_i(0)$!
- ▶ Unconfoundedness: $T_i \perp (Y_i(1), Y_i(0))|X_i$
- individual treatment effect (ITE):

$$\tau(x) := E[Y_i(1)|X_i = x] - E[Y_i(0)|X_i = x]$$

$$= E[Y_i(1)|T_i = 1, X_i = x] - E[Y_i(0)|T_i = 0, X_i = x]$$

$$= E[Y_i|T_i = 1, X_i = x] - E[Y_i|T_i = 0, X_i = x],$$

average treatment effect (ATE): $\tau := E[Y_i(1) - Y_i(0)] = E[\tau(X)].$ Note: $E[\bar{Y}(T=1) - \bar{Y}(T=0)] \neq \tau$ in general; why?

Standard approaches

► Old(?) approach: regression!

$$E[Y|T=t, X=x]=t\theta+x'\beta,$$

which can be fitted using data

$$D = \{(X_i, T_i, Y_i) : i = 1, ..., n\}.$$

Why reasonable? no hidden confounding!

- But it requires ... especially for high-dim data.
- Most popular alternative: Propensity Scores (PS) $PS(X_i) := Pr(T_i = 1|X_i)$.
- Nosenbaum and Rubin (1983, Biometrika): $T_i \perp (Y_i(1), Y_i(0))|PS(X_i)$.
- ightharpoonup Using (X_i, T_i) 's to fit

$$\mathsf{Logit}(Pr(T=1|X)) = X'\alpha,$$

$$\implies e_i := PS(X_i) = \operatorname{Logit}^{-1}(X_i'\hat{\alpha}).$$

• Often trim out observations with too small or too large e_i (i.e. outliers).

▶ PS regression: fit

$$E[Y|T = t, X = x] = t\theta + PS(x)\gamma$$

using data D.

- PS matching: matching each obs with T_i = 1 with one (or more) with T_i = 0 by their e_i's, then analysis on matched sets.
- PS stratification: partitioning the data into subsets/strata based on the distribution of e_i's, then stratified analysis.
- Inverse probability weighting: each obs is assigned a weight $w_i = 1/e_i$ if $T_i = 1$; $w_i = 1/(1 - e_i)$ if $T_i = 0$; then a weighted analysis, e.g.

$$\hat{\tau} = \bar{Y}_w(T=1) - \bar{Y}_w(T=0) = \frac{\sum_{i:T_i=1} w_i Y_i}{\sum_{i:T_i=1} w_i} - \frac{\sum_{i:T_i=0} w_i Y_i}{\sum_{i:T_i=0} w_i}.$$

But ...

New approaches

- Dorie et al (2019). Automated versus Do-It-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition. Stat Sci.
- Simulated data; no hidden confounders,..., as for PS. Standard ones: both PS and (regression) mean response modeled by GLMs; how about by ML?
- ► Five competition winners:
 - ► BART:
 - Superlearner + Targeted MLE: ensemble of glm, gbm, gam, glmnet and splines;
 - calCause: RF or GP by CV;
 - ▶ h2o.ai: ensemble of glm, RF, DL (NN), LASSO and ridge reg;
 - ► GBM + MDIA.

Counterfactual RF

- Lu et al (2018). Estimating Individual Treatment Effect in Observational Data Using Random Forest Methods. JCGS.
- M1: C-RF: build two RFs, $\hat{f}_1(X)$ and $\hat{f}_0(X)$, using the subsamples of $T_i=1$ and $T_i=0$ respectively; then for each $X_i=x\in D$, run

$$\hat{\tau}(x) = \hat{f}_1(x) - \hat{f}_0(x).$$

better to use the OOB estimate...

- ▶ Or, M2: $\hat{\tau}(x) = RF(x,1) RF(x,0)$, where RF(X,T) is built using all data (X_i, T_i, Y_i) 's. Model/assumption: $Y_i = f(T_i, X_i) + \epsilon_i$, In contrast to M1: $Y_i = f_t(X_i) + \epsilon_i$ for $T_i = t$.
- ▶ Or, M3: $\hat{\tau}(x) = RF(x, 1) RF(x, 0)$, where RF(X, T) is built using all data $(X_i, T_i, X_i * T_i, Y_i)$'s.
- In analogy, in linear reg: M1: $Y_i = X_i'\beta_0 + \epsilon_i$ for $T_i = 0$; $Y_i = X_i'\beta_1 + \epsilon_i$ for $T_i = 1$. M2: $Y_i = T_i\theta + X_i'\beta + \epsilon_i$. M3: $Y_i = T_i\theta + X_i'\beta + (X_i * T_i)\delta + \epsilon_i$.

Causal trees

- Ref: Athey and Imbens (2016). Recursive partitioning for heterogeneous causal effects. PNAS.
- Goal: partition the data into different subpopulations each with a (alomost) homogeneous treatment effect.
- Key idea: similar to CART, but do "honest" estimation: using two independent data subsets for partitioning and parameter estimation.
 - 1. Use an independent D^{est} , instead of D^{tr} , to estimate leaf means;
 - Modify the splitting (and CV) criterion to have an unbiased MSE estimator for the causal treatment effect; "fundamental problem of causal inference": the causal effect is not observed.
 - 3. Account for increasing variance with tree growing.
- Use another independent sample for inference.
- ► Causal forests (Athey and Wager 2019).

Review: CART for regression

- Y: continuous.
- ▶ Key: 1) determin splitting variables and split points (e.g. $x_j < t_j$); $\Longrightarrow R_1, R_2, ...$; 2) determine c_m in each R_m .
- in 1), use a sequential or greedy searchfor each j and s: find $x_j < s$ s.t. $R_1(j,s) = \{x | x_j < s\}, \ R_2(j,s) = \{x | x_j \ge s\},$ $\min_{j,s} [\min_{c_1} \sum_{X_i \in R_1(j,s)} (Y_i c_1)^2 + \min_{c_2} \sum_{X_i \in R_2(j,s)} (Y_i c_2)^2].$
- ▶ in 2), given R_1 and R_2 , $\hat{c}_k = \text{Ave}(Y_i | X_i \in R_k)$ for k = 1, 2.
- ▶ Repeat the process on R_1 and R_2 respectively, ...