Causal machine learning

Wei Pan

Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN 55455

Email: panxx014@umn.edu
PubH 8475/Stat 8056

Outline

- Causal inference in the presence of hidden confounding
- Instrumental variable (IV) regression: 2SLS
- Mendelian randomization (MR)
- Network deconvolution (ND)
- DeepIV
- Causal inference without confounding
- Counterfactual model
- Standard approaches
- New (ML) approaches
- Causal trees and forests

Chocolate consumption vs Nobel prize winning: Messerli 2012, NEJM

Chocolate consumption vs Nobel prize winning: flavanoids?

(Kilograms per year per capita)
Liters per year per capita)

Figure: Fig 1 in Maurage et al 2013, J Nutrition.

Introduction: motivation

Adam, D. (2019). The gene-based hack that is revolutionizing epidemiology: Mendelian randomization offers a simple way to distinguish causation from correlation. But are scientists overusing it? Nature, 576:196-199.

- Limitations of epi/observational/association studies \Longrightarrow
- Failures of multiple \$100-million trials!
- Causal inference!
- MR: causal inf with observational data
- Easy to use: wide availability of GWAS summary data
- Magic? No! Strong modeling assumptions...
- Boef (2015, IJE): 178 published, $<1 / 2$ "adequately discussed these assumptions"
- "Statistical tools for epidemiology are improving. And although Mendelian randomization does not always offer perfect clarity, it might, at least, point researchers in the right direction."

Introduction: IV reg and MR

- MR: a special application of instrumental variable (IV) reg. 2S-2SLS
using (indep) genetic variants/SNPs as IVs
GWAS summary data
Bowden, Burgess, Davey Smith,;
- IV reg for causal inference

Angrist, Imbens won a half of the 2021 Nobel Prize in Economics:
Angrist, J.D. and G.W. Imbens (1995). "Two-stage least squares estimation of average causal effect in models with variable treatment intensity." JASA, 90(430): 431-442. Angrist, J.D., G.W. Imbens, and D.B. Rubin (1996). "Identification of causal effects using instrumental variables." JASA, 91: 444-472.
Imbens, G.W. and J.D. Angrist (1994). "Identification and estimation of local average treatment effects." Econometrica, 61: 467-476.

IV reg: Basic Idea

- True causal model:

$$
X=Z \beta_{X}+U \beta_{X U}+\epsilon_{X}^{*}, \quad Y=X \theta+U \beta_{Y U}+\epsilon_{Y}^{*}
$$

- θ : parameter of interest; e.g., $H_{0}: \theta=0$.
- Key challenge: hidden confounder U
$\Longrightarrow \hat{\theta}$ biased in $Y \sim X$.
Why?
- 2-Stage Least Square (2SLS): under 3 valid IV assumptions,

$$
E(Y \mid Z)=\theta E(X \mid Z) \Longrightarrow
$$

Stage 1: $\hat{X}=Z \hat{\beta}_{X}$,
Stage 2: $Y=\hat{X} \theta+\epsilon_{Y}$.
Cnnsistent and AN (but low efficiency)!

- a Key feature: 2-sample 2SLS, can infer θ with two independent samples $\left\{\left(Z_{i}, X_{i}\right)\right\}$'s and $\left\{\left(Z_{i}, Y_{i}\right)\right\}$'s!

MR: Basic Idea

- MR: consider one IV,

$$
X=Z_{i} \beta_{X i}+\epsilon_{X}, \quad Y=X \theta+\epsilon_{Y}^{* *}=Z_{i} \beta_{Y i}+\epsilon_{Y}
$$

Key: $\beta_{Y i}=\beta_{X i} \theta$

- MR: under the 3 valid IV assumptions, $\hat{\theta}=\hat{\beta}_{Y_{i}} / \hat{\beta}_{X i}$ unbiased, consistent, AN, ...
- $\hat{\beta}_{Y i}, \hat{\beta}_{X i}$ (and $\hat{\sigma}_{Y i}^{2}, \hat{\sigma}_{X i}^{2}$) directly available from two indep GWAS summary datasets.
- If multiple indept IVs, combine by meta-analysis: IVW(FE), ...

Assumptions

A

B

A2

Figure: (A) Three assumptions for valid IVs. (B) Our causal model.

- Violation of A2: uncorrelated pleiotropy; $\beta_{X_{i}}=\gamma_{i}, \alpha_{i}$ uncor.
- Violation of A3: correlated pleiotropy; $\beta_{X i}=\gamma_{i}+\phi_{i} \beta_{X U}, \alpha_{i}+\phi_{i} \beta_{Y U}$ correlated \Longrightarrow violation of InSIDE required by MR-Egger, IVW(RE), RAPS (treating α_{i} random).

MR vs RCT

Randomized Controlled Trial (SELECT)

Figure: Yarmolinsky, James, et al. "Circulating selenium and prostate cancer risk: a Mendelian randomization analysis." JNCI: Journal of the National Cancer Institute 110.9 (2018): 1035-1038.

UVMR-cML (Xue, Shen and Pan (2021, AJHG)

- Key: relax Assumptions (A1), A2 \& A3.
- A more general (true causal) model:

$$
\begin{aligned}
& \beta_{X i}=\gamma_{i}+\beta_{X U} \cdot \phi_{i} \\
& \beta_{Y i}=\theta \cdot\left(\gamma_{i}+\beta_{X U} \cdot \phi_{i}\right)+\alpha_{i}+\beta_{Y U} \cdot \phi_{i}=\theta \cdot \beta_{X i}+r_{i}
\end{aligned}
$$

- From the GWAS data: $\hat{\beta}_{X i} \sim N\left(\beta_{X i}, \hat{\sigma}_{X i}^{2}\right)$ and $\hat{\beta}_{Y i} \sim N\left(\beta_{Y i}, \hat{\sigma}_{Y_{i}}^{2}\right)$ for $i=1, \cdots, m$. All indep
- Log-likelihood:

$$
L=-\frac{1}{2} \sum_{i=1}^{m}\left(\frac{\left(\hat{\beta}_{X i}-\beta_{X i}\right)^{2}}{\hat{\sigma}_{X i}^{2}}+\frac{\left(\hat{\beta}_{Y i}-\theta \cdot \beta_{X i}-r_{i}\right)^{2}}{\hat{\sigma}_{Y i}^{2}}\right)
$$

- Constrained maximum likelihood (cML):

$$
\max L \text { subject to } \sum_{i=1}^{m} I\left(r_{i} \neq 0\right)=K .
$$

- Try $K=0,1,2, \ldots, m-2$, then use BIC to select \hat{K}.
- A sequential algorithm: fast but ...

Theory

- Assumption 1: (Plurality valid condition.) Suppose that B_{0} is the index set of the true valid IVs with $K_{0}=\left|B_{0}\right|$. For any $B \subseteq\{1, \cdots, m\}$ and $|B|=K_{0}$, if $B \neq B_{0}$, then the K_{0} ratios $\left\{\beta_{Y i} / \beta_{X i}, i \in B\right\}$ are not all equal.
- Note: valid IVs: $\beta_{Y_{i}} / \beta_{X i}=\theta$; invalid IVs: $\beta_{Y_{i}} / \beta_{X_{i}}=\theta+r_{i} / \beta_{X i} \neq \theta$.
- Assumption 2: (Orders of the variances and sample sizes.) There exist positive constants I_{X}, I_{Y}, I_{N} and u_{X}, u_{Y}, u_{N} such that we have $I_{X} / N_{1} \leq \hat{\sigma}_{X i}^{2} \leq u_{X} / N_{1}, I_{Y} / N_{2} \leq \hat{\sigma}_{Y i}^{2} \leq u_{Y} / N_{2}$, and $I_{N} \cdot N_{2} \leq N_{1} \leq u_{N} \cdot N_{2}$ for $i=1, \cdots, m$.
- Note: usually satisfied, e.g. with LSE or MLE.

Theory

- Theorem 1: (Selection consistency.) With Assumptions 1 and 2 satisfied, if $K_{0} \in \mathcal{K}$, we have $P\left(\hat{K}=K_{0}\right) \rightarrow 1$ and $P\left(\hat{B}_{\hat{K}}=B_{0}\right) \rightarrow 1$ as $N_{1}, N_{2} \rightarrow \infty$.
- Theorem 2. (Consistency and AN.) With Assumptions 1 and 2 (and some regularity conditions), the cMLE $\hat{\theta}$ is consistent and asymptotically normal. Note: similar to the theory in RAPS (Zhao et al 2020, AoS). Only valid IVs are used.
- Allowing the presence of weak IVs (i.e. A1 violated). similar to RAPS.
- Theorem 3. (DP/bootstrap is consistent.)

Finite-sample adjustments

- Model averaging (MA) (Buckland et al 1997, B^{\prime} 'ss):

$$
\begin{gathered}
w_{K}^{0}=\exp (-\operatorname{BIC}(K) / 2), w_{K}=w_{K}^{0} / \sum_{K \in \mathcal{K}} w_{K}^{0} \\
\hat{\theta}_{w}=\sum_{K \in \mathcal{K}} w_{K} \cdot \hat{\theta}(K), \quad \operatorname{SE}\left(\hat{\theta}_{w}\right)=\ldots
\end{gathered}
$$

- Data perturbation (DP): or, parametric bootstrap, $\hat{\beta}_{X i}^{(t)} \sim N\left(\hat{\beta}_{X i}, \hat{\sigma}_{X i}^{2}\right)$ and $\hat{\beta}_{Y i}^{(t)} \sim N\left(\hat{\beta}_{Y i}, \hat{\sigma}_{Y i}^{2}\right)$ for $i=1, \ldots, m$ obtain $\hat{\theta}^{(t)}(K)$ for $t=1,2, \ldots, T$.

$$
\hat{\theta}_{D P}(K)=\frac{\sum_{t=1}^{T} \hat{\theta}^{(t)}(K)}{T}, \quad \operatorname{SE}\left(\hat{\theta}_{D P}(K)\right)=\operatorname{SD}\left(\left\{\hat{\theta}^{(t)}(K)\right\}\right)
$$

then apply MA (optional):
Bagging (Breiman 1996 ML; Efron 2014 JASA).

Simulations

Compared with most state-of-the-art MR methods; As expected, ...

Simulation results:

$\theta=0.1, \mathrm{n}=50000,60 \%$ Invalid

| CML-MA-BIC | MR-Lasso | MR-IVW-Oracle | MR-Weighted-Mode |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MR-Mix | MR-PRESSO | MR-Egger | MR-RAPS |
| MR-ContMix | MR-IVW | MR-Weighted-Median | |

Applications:

Extensions/alternatives

- UVMR-cML-C: allowing overlapping samples (Lin, Xue and Pan 2023, PLOS Genet);
- MVMR-cML: allowing multiple exposures (Lin, Xue and Pan 2023, AJHG)
- Next: apply UVMR-cML-C and ND to infer (general) causal networks.
allowing cycles; data from different and possibly overlapping samples.
- A limitation: assuming the causal direction is known. bi-directional MR
- Steiger's method (Hemani et al 2017, PLoS Genet): Lemma. If $Z \rightarrow X \rightarrow Y$ and no hidden confounders, then $\operatorname{corr}(Z, X)>\operatorname{corr}(Z, Y)$.
With hidden confounders, it may not always hold;
Only working for one IV.
- Xue \& Pan (2020, PLoS Genet): extending to multiple IVs.
- Xue \& Pan (2022, PLoS Genet): Bi-directional CD-cML (and MR-cML).

Network deconvolution (ND)

- Feizi et al (2013, Nat Biotechnol.)
- Q: given a total-causal-effect graph G_{t}, how to estimate the direct-causal-effect graph G_{d} ?

$$
\begin{aligned}
& G_{t}=G_{d}+G_{d}^{2}+G_{d}^{3}+\ldots .=G_{d}\left(I+G_{d}+G_{d}^{2}+G_{d}^{3}+\ldots\right)=G_{d}\left(I-G_{d}\right)^{-1} \\
& \text { if } \rho\left(G_{d}\right)<1 \text {. }
\end{aligned}
$$

$$
\text { Hence, } G_{d}=G_{t}\left(I+G_{t}\right)^{-1} \text {. }
$$

- MR-cMLgraph (Lin, Xue and Pan, 2023, PLOS Genet): use MR-cML to construct \hat{G}_{t}, then use ND to obtain $\hat{G}_{d}=\hat{G}_{t}\left(I+\hat{G}_{t}\right)^{-1}$.
- Theory: $\operatorname{vec}\left(\hat{G}_{t}\right)$ and $\operatorname{vec}\left(\hat{G}_{d}\right)$ are consistent and AN.
- Can use data perturbation for inference.

Application: BMI might be a 'minor' risk factor for CAD, but an indep one for AF

Figure: Total (left) and direct (right) causal graphs

ND: continued

- Derivation is for a directed graph; how about for an undirected graph?
- Let Σ be an invertible correlation matrix among a set of variables of interest. If $G_{t}=\Sigma-I$, then $G_{d}=I-\Omega$, where $\Omega=\Sigma^{-1}$ is the precision matrix.
Alipanahi and Frey (2013, Nature Biotechnol).
- Lior Pachter. The network nonsense of manolis kellis, February 2014. https://liorpachter.wordpress.com/2014/02/ 11/the-network-nonsense-of-manolis-kellis/.

DeepIV

- True model:

$$
X=Z \alpha+U+\epsilon_{X}, \quad Y=g(X)+U+\epsilon_{Y}
$$

- Again fitting $Y \sim X$ leads to biased estimate of $g()$ due to hidden confounding!
- $E(Y \mid Z)=E[g(X) \mid Z]$.
- DeepIV (Hartfford et al 2017, ICML): use a FNN $g_{\theta}($.$) ,$

$$
\hat{\theta}=\arg \min _{\theta} \sum_{i=1}^{n}\left[Y_{i}-\int g_{\theta}(x) d F\left(x \mid Z_{i}\right)\right]^{2}+P(\theta ; \lambda)
$$

- Slow: need to use MC sampling, $\int g_{\theta}(x) d F\left(x \mid Z_{i}\right) \approx \sum_{j=1}^{M} g_{\theta}\left(X_{i j}\right), \quad X_{i j} \sim \hat{F}\left(x \mid Z_{i}\right)$.
- Unstable: ill-posed inverse problem; Fredholm integral equation of the first kind (Newey 2013, Am Econ Rev).

Discussion

- Alternative: DeLIVR (He et al 2023, Biostatistics).
- Several new IV deep learning methods...
- An application: causal feature extraction (Yao et al 2023, Stat in Med).

DeLIVR

- Stage 2 model: $E(Y \mid Z)=E[g(X) \mid Z)$

Problem: estimating $g(X)$.

- Key: $E[g(X) \mid Z)=h\left(\mu_{Z}\right) \neq g\left(\mu_{z}\right), \mu_{Z}=E(X \mid Z)$.
- New: estimating $E[g(X) \mid Z)=h\left(\mu_{Z}\right)$, Assuming $X \mid Z \sim N\left(\mu_{Z}, \sigma^{2}\right)$.
- Would this address the original Q?

Proposition. Suppose $X \mid Z \sim N\left(\mu_{Z}, \sigma^{2}\right)$, and $g(X)$ is a univariate function in X (and independent of μ_{Z}), then

1. $g(X)=c$, a constant, if and only if $E(g(X) \mid Z)=c$.
2. $g(X)$ is linear in X if and only if $E(g(X) \mid Z)$ is linear in μ_{Z}.
3. $g(X)$ is a k-th degree polynomial in X if and only if $E(g(X) \mid Z)$ is a k-th degree polynomial in μ_{Z}.

- More generally, if $g(X)$ is locally smooth, by a Taylor expansion, ...
- DeLIVR: estimating an ANN $h_{\theta}($.$) for h($.$) .$
- Inference: use independent training and inference subsamples

Simulation results: DeLIVR more stable than DeepIV

NT5DC2 cubic

From MRI to AD prediction

Figure: CNN.

DeepFEIVR

- Deep Feature Extraction via IV Regression (DeepFEIVR).
- X : image; Z : SNPs/IVs; Y : AD status.
- Model:

$$
f(X)=Z B+U+\epsilon_{X}, \quad Y=f(X) \beta+U+\epsilon_{Y}
$$

- Key $H_{0}: \beta=0$.
- Key challenge: hidden confounder U
- 2SLS-like:

$$
\hat{f}(X)=Z \hat{B}, \quad Y=\hat{f}(X) \beta+\epsilon_{Y}=Z \hat{B} \beta+\epsilon_{Y}
$$

- Contrast to existing nonparametric IV, e.g. deepIV and DeLIVR:

$$
X=Z B+U+\epsilon_{X}, \quad Y=f(X)+U+\epsilon_{Y}
$$

Network architectures

FC (1)
(a) a direct CNN model

Proj + FC (1)
(b) DeepFEIVR

$$
f_{\theta}
$$

Second part: No (hidden) confounding

- Data: $D=\left\{\left(X_{1}, T_{1}, Y_{1}\right), \ldots,\left(X_{n}, T_{n}, Y_{n}\right)\right\} . T_{i}=0$ or 1 . Goal: any trt effects?
- Counterfactual model:
$Y_{i}(1)$ and $Y_{i}(0)$ are the responses if individual i is and is not given the treatment, respectively. But we can NOT observe both $Y_{i}(1)$ and $Y_{i}(0)$!
- Unconfoundedness: $T_{i} \perp\left(Y_{i}(1), Y_{i}(0)\right) \mid X_{i}$
- individual treatment effect (ITE):

$$
\begin{aligned}
\tau(x) & :=E\left[Y_{i}(1) \mid X_{i}=x\right]-E\left[Y_{i}(0) \mid X_{i}=x\right] \\
& =E\left[Y_{i}(1) \mid T_{i}=1, X_{i}=x\right]-E\left[Y_{i}(0) \mid T_{i}=0, X_{i}=x\right] \\
& =E\left[Y_{i} \mid T_{i}=1, X_{i}=x\right]-E\left[Y_{i} \mid T_{i}=0, X_{i}=x\right]
\end{aligned}
$$

- average treatment effect (ATE):
$\tau:=E\left[Y_{i}(1)-Y_{i}(0)\right]=E[\tau(X)]$.
Note: $E[\bar{Y}(T=1)-\bar{Y}(T=0)] \neq \tau$ in general; why?

Standard approaches

- Old(?) approach: regression!

$$
E[Y \mid T=t, X=x]=t \theta+x^{\prime} \beta
$$

which can be fitted using data
$D=\left\{\left(X_{i}, T_{i}, Y_{i}\right): i=1, \ldots, n\right\}$.
Why reasonable? no hidden confounding!

- But it requires ... especially for high-dim data.
- Most popular alternative: Propensity Scores (PS) $\operatorname{PS}\left(X_{i}\right):=\operatorname{Pr}\left(T_{i}=1 \mid X_{i}\right)$.
- Rosenbaum and Rubin (1983, Biometrika): $T_{i} \perp\left(Y_{i}(1), Y_{i}(0)\right) \mid P S\left(X_{i}\right)$.
- Using $\left(X_{i}, T_{i}\right)$'s to fit

$$
\operatorname{Logit}(\operatorname{Pr}(T=1 \mid X))=X^{\prime} \alpha
$$

$$
\Longrightarrow e_{i}:=P S\left(X_{i}\right)=\operatorname{Logit}^{-1}\left(X_{i}^{\prime} \hat{\alpha}\right)
$$

- Often trim out observations with too small or too large e_{i} (i.e. outliers).
- PS regression: fit

$$
E[Y \mid T=t, X=x]=t \theta+P S(x) \gamma
$$

using data D.

- PS matching:
matching each obs with $T_{i}=1$ with one (or more) with $T_{i}=0$ by their e_{i} 's, then analysis on matched sets.
- PS stratification:
partitioning the data into subsets/strata based on the distribution of e_{i} 's, then stratified analysis.
- Inverse probability weighting:
each obs is assigned a weight $w_{i}=1 / e_{i}$ if $T_{i}=1$; $w_{i}=1 /\left(1-e_{i}\right)$ if $T_{i}=0$; then a weighted analysis, e.g.

$$
\hat{\tau}=\bar{Y}_{w}(T=1)-\bar{Y}_{w}(T=0)=\frac{\sum_{i: T_{i}=1} w_{i} Y_{i}}{\sum_{i: T_{i}=1} w_{i}}-\frac{\sum_{i: T_{i}=0} w_{i} Y_{i}}{\sum_{i: T_{i}=0} w_{i}}
$$

- But ...

New approaches

- Dorie et al (2019). Automated versus Do-lt-Yourself Methods for Causal Inference: Lessons Learned from a Data Analysis Competition. Stat Sci.
- Simulated data; no hidden confounders,..., as for PS. Standard ones: both PS and (regression) mean response modeled by GLMs; how about by ML?
- Five competition winners:
- BART;
- Superlearner + Targeted MLE: ensemble of glm, gbm, gam, glmnet and splines;
- calCause: RF or GP by CV;
- h2o.ai: ensemble of glm, RF, DL (NN), LASSO and ridge reg;
- GBM + MDIA.

Counterfactual RF

- Lu et al (2018). Estimating Individual Treatment Effect in Observational Data Using Random Forest Methods. JCGS.
- M1: C-RF: build two RFs, $\hat{f}_{1}(X)$ and $\hat{f}_{0}(X)$, using the subsamples of $T_{i}=1$ and $T_{i}=0$ respectively; then for each $X_{i}=x \in D$, run

$$
\hat{\tau}(x)=\hat{f}_{1}(x)-\hat{f}_{0}(x) .
$$

better to use the OOB estimate...

- Or, M2: $\hat{\tau}(x)=R F(x, 1)-R F(x, 0)$, where $R F(X, T)$ is built using all data $\left(X_{i}, T_{i}, Y_{i}\right)$'s.
Model/assumption: $Y_{i}=f\left(T_{i}, X_{i}\right)+\epsilon_{i}$,
In contrast to M1: $Y_{i}=f_{t}\left(X_{i}\right)+\epsilon_{i}$ for $T_{i}=t$.
- Or, M3: $\hat{\tau}(x)=R F(x, 1)-R F(x, 0)$, where $R F(X, T)$ is built using all data $\left(X_{i}, T_{i}, X_{i} * T_{i}, Y_{i}\right.$)'s.
- In analogy, in linear reg:

M1: $Y_{i}=X_{i}^{\prime} \beta_{0}+\epsilon_{i}$ for $T_{i}=0 ; Y_{i}=X_{i}^{\prime} \beta_{1}+\epsilon_{i}$ for $T_{i}=1$.
M2: $Y_{i}=T_{i} \theta+X_{i}^{\prime} \beta+\epsilon_{i}$.
M3: $Y_{i}=T_{i} \theta+X_{i}^{\prime} \beta+\left(X_{i} * T_{i}\right) \delta+\epsilon_{i}$.

Causal trees

- Ref: Athey and Imbens (2016). Recursive partitioning for heterogeneous causal effects. PNAS.
- Goal: partition the data into different subpopulations each with a (alomost) homogeneous treatment effect.
- Key idea: similar to CART, but do "honest" estimation: using two independent data subsets for partitioning and parameter estimation.

1. Use an independent $D^{\text {est }}$, instead of $D^{t r}$, to estimate leaf means;
2. Modify the splitting (and CV) criterion to have an unbiased MSE estimator for the causal treatment effect; "fundamental problem of causal inference": the causal effect is not observed.
3. Account for increasing variance with tree growing.

- Use another independent sample for inference.
- Causal forests (Athey and Wager 2019).

Review: CART for regression

- Y : continuous.
- Key: 1) determin splitting variables and split points (e.g. $\left.x_{j}<t_{j}\right) ; \Longrightarrow R_{1}, R_{2}, \ldots$;

2) determine c_{m} in each R_{m}.

- in 1), use a sequential or greedy searchfor each j and s : find $x_{j}<s$ s.t.
$R_{1}(j, s)=\left\{x \mid x_{j}<s\right\}, R_{2}(j, s)=\left\{x \mid x_{j} \geq s\right\}$, $\min _{j, s}\left[\min _{c_{1}} \sum_{X_{i} \in R_{1}(j, s)}\left(Y_{i}-c_{1}\right)^{2}+\min _{c_{2}} \sum_{X_{i} \in R_{2}(j, s)}\left(Y_{i}-c_{2}\right)^{2}\right]$.
- in 2), given R_{1} and R_{2},
$\hat{c}_{k}=\operatorname{Ave}\left(Y_{i} \mid X_{i} \in R_{k}\right\}$ for $k=1,2$.
- Repeat the process on R_{1} and R_{2} respectively, ...

