Chapter 3. Linear Models for Regression

Wei Pan

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu

> PubH 7475/8475 ©Wei Pan

> > ▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Linear Model and Least Squares

• LM:
$$Y_i = \beta_0 + \sum_{j=1}^{p} X_{ij}\beta_j + \epsilon_i$$
,
 ϵ_i 's iid with $E(\epsilon_i) = 0$ and $Var(\epsilon_i) = \sigma^2$.

•
$$RSS(\beta) = \sum_{i=1}^{n} (Y_i - \beta_0 - \sum_{j=1}^{p} X_{ij}\beta_j)^2 = ||Y - X\beta||_2^2.$$

► LSE (OLSE):
$$\hat{\beta} = \arg \min_{\beta} RSS(\beta) = (X'X)^{-1}X'Y$$
.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

 Some questions: ² = RSS(β)/(n - p - 1). Q: what happens if the denominator is n? Q: what happens if X'X is (nearly) singular?
 What if p is large relative to n?

Variable selection:

forward, backward, stepwise: fast, but may miss good ones; best-subset: too time consuming.

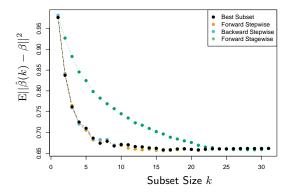


FIGURE 3.6. Comparison of four subset-selection techniques on a simulated linear regression problem $Y = X^T \beta + \varepsilon$. There are N = 300 observations on p = 31 standard Gaussian variables, with pairwise correlations all equal to 0.85. For 10 of the variables, the coefficients are drawn at random from a N(0, 0.4) distribution; the rest are zero. The moise $x \in \mathbb{R}^{+}$

æ

Shrinkage or regularization methods

Use regularized or penalized RSS:

$$PRSS(\beta) = RSS(\beta) + \lambda J(\beta).$$

 λ : penalization parameter to be determined;

(thinking about the p-value thresold in stepwise selection, or subset size in best-subset selection.)

J(): prior; both a loose and a Bayesian interpretations; log prior density.

• Ridge:
$$J(\beta) = \sum_{j=1}^{p} \beta_j^2$$
; prior: $\beta_j \sim N(0, \tau^2)$.
 $\hat{\beta}^R = (X'X + \lambda I)^{-1}X'Y$.

▶ Properties: biased but small variances,

$$E(\hat{\beta}^R) = (X'X + \lambda I)^{-1}X'X\beta,$$

$$Var(\hat{\beta}^R) = \sigma^2(X'X + \lambda I)^{-1}X'X(X'X + \lambda I)^{-1} \leq Var(\hat{\beta}),$$

$$df(\lambda) = tr[X(X'X + \lambda I)^{-1}X'] \leq df(0) = tr(X(X'X)^{-1}X') =$$

$$tr((X'X)^{-1}X'X) = p,$$

- ► Lasso: $J(\beta) = \sum_{j=1}^{p} |\beta_j|$. Prior: β_j Laplace or DE(0, τ^2); No closed form for $\hat{\beta}^L$.
- Properties: biased but small variances, $df(\hat{\beta}^L) = \#$ of non-zero $\hat{\beta}_j^L$'s (Zou et al).
- Special case: for X'X = I, or simple regression (p = 1), $\hat{\beta}_j^L = ST(\hat{\beta}_j, \lambda) = sign(\hat{\beta}_j)(|\hat{\beta}_j| - \lambda)_+,$ compared to:

$$\hat{\beta}_{j}^{R} = \hat{\beta}_{j}/(1+\lambda), \hat{\beta}_{j}^{H} = \operatorname{HT}(\hat{\beta}_{j}, \lambda) = \hat{\beta}_{j}I(\hat{\beta}_{j} > \lambda), \hat{\beta}_{j}^{B} = \operatorname{HT2}(\hat{\beta}_{j}, M) = \hat{\beta}_{j}I(\operatorname{rank}(\hat{\beta}_{j}) \leq M).$$

A key property of Lasso: β^L_j = 0 for large λ, but not β^R_j.
 -simultaneous parameter estimation and selection.

Note: for a convex J(β) (as for Lasso and Ridge), min PRSS is equivalent to: min RSS(β) s.t. J(β) ≤ t.

Offer an intutive explanation on why we can have β^L_j = 0; see Fig 3.11.
 Theory: |β_i| is singular at 0; Fan and Li (2001).

- How to choose λ? obtain a solution path β̂(λ), then, as before, use tuning data or CV or model selection criterion (e.g. AIC or BIC).
- Least Angle Regression (LARS): fast to find solution paths in LMs.

Example: R code ex3.1.r

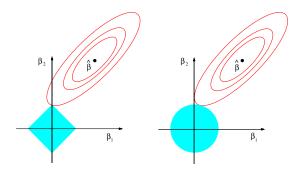
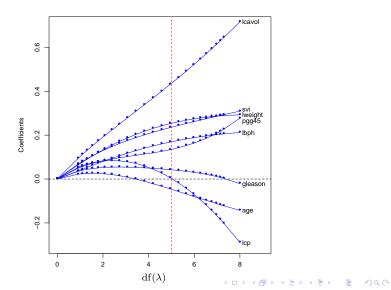
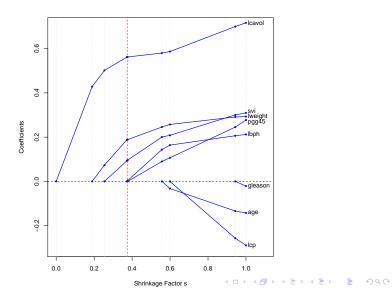


FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \le t$ and $\beta_1^2 + \beta_2^2 \le t^2$, respectively, while the red ellipses are the contours of the least squares error function.





- Lasso: biased estimates; alternatives:
- Relaxed lasso: 1) use Lasso for VS; 2) then use LSE or MLE on the selected model.

▶ Use a non-convex penalty:
SCAD: eq (3.82) on p.92;
Bridge
$$J(\beta) = \sum_j |\beta_j|^q$$
 with $0 < q < 1$;
Adaptive Lasso (Zou 2006): $J(\beta) = \sum_j |\beta_j|/|\tilde{\beta}_{j,0}|$;
Truncated Lasso Penalty (Shen, Pan &Zhu 2012, JASA):
TLP $(\beta; \tau) = \sum_j \min(|\beta_j|/\tau, 1) \rightarrow I(\beta \neq 0)$ as $\tau \rightarrow 0^+$.
MCP: ...

- Choice b/w Lasso and Ridge: bet on a sparse model? risk prediction for GWAS (Austin, Pan & Shen 2013, SADM).
- Elastic net (Zou & Hastie 2005):

$$J(\beta) = \sum_{j} \alpha |\beta_{j}| + (1 - \alpha)\beta_{j}^{2}$$

may select more (correlated) X_j 's.

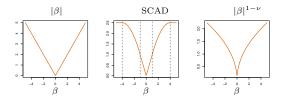


FIGURE 3.20. The lasso and two alternative nonconvex penalties designed to penalize large coefficients less. For SCAD we use $\lambda = 1$ and a = 4, and $\nu = \frac{1}{2}$ in the last panel.

Group Lasso: a group of variables β_(g) = (β_{j1}, ..., β_{jpg})' are to be 0 (or not) at the same time,

$$J(\beta) = \sum_{g} \sqrt{p_g} ||\beta_{(g)}||_2$$

 L_2 -norm; not $L_1/Lasso$ or squared $L_2/Ridge$. better in VS (but worse for parameter estimation?)

- Group SCAD: $J(\beta) = \sum_{g} \sqrt{p_g} SCAD(||\beta_{(g)}||_2)$
- Group TLP: $J(\beta, \tau) = \sum_{g} \sqrt{p_g} TLP(||\beta_{(g)}||_2; \tau)$
- Sparse Group Lasso: $J(\beta) = (1 \alpha) \sum_{g} \sqrt{p_g} ||\beta_{(g)}||_2 + \alpha ||\beta||_1$
- Grouping/fusion penalties: encouraging equalities b/w β_j's (or |β_j|'s).
 - Fused Lasso: $J(\beta) = \sum_{j=1}^{p-1} |\beta_j \beta_{j+1}|$ $J(\beta) = \sum_{(j,k)\in G} |\beta_j - \beta_k|$
 - Generalized Lasso: $J(\beta) = ||D\beta||_1$
 - (8000) Grouping pursuit (Shen & Huang 2010, JASA):

$$J(\beta;\tau) = \sum_{j=1}^{p-1} TLP(\beta_j - \beta_{j+1};\tau)$$

Grouping penalties:

(8000) Zhu, Shen & Pan (2013, JASA):

$$J_2(\beta;\tau) = \sum_{j=1}^{p-1} TLP(|\beta_j| - |\beta_{j+1}|;\tau);$$

$$J(\beta;\tau_1,\tau_2) = \sum_{j=1}^{p} TLP(\beta_j;\tau_1) + J_2(\beta;\tau_2);$$

(8000) Kim, Pan & Shen (2013, Biometrics):

$$J_2'(eta) = \sum_{j\sim k} |I(eta_j
eq 0) - I(eta_k
eq 0)|;$$

$$J_2(\beta;\tau) = \sum_{j \sim k} |TLP(\beta_j;\tau) - TLP(\beta_k;\tau)|;$$

(8000) Dantzig Selector (§3.8).

 (8000) Theory (§3.8.5); Greenshtein & Ritov (2004) (persistence);
 Zou 2006 (non-consistency) ... R packages for penalized GLMs (and Cox PHM)

- glmnet: Ridge, Lasso and Elastic net.
- ncvreg: SCAD, MCP.
- glmtlp: TLP.
- grpreg: group Lasso, group SCAD, ...
- seagull, SGL: sparse group Lasso.
- genlasso: generalized Lasso for LMs, including fused Lasso.
- FGSG: grouping/fusion penalties (based on Lasso, TLP, etc) for LMs
- ► More general convex programming: CVXR; like CVX, CVXPY.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example 3.3.R

Computational Algorithms for Lasso

- Quadratic programming: the original; slow.
- LARS (§3.8): the solution path is piece-wise linear; at a cost of fitting several single LMs; not general?
- Incremental Forward Stagewise Regression (§3.8): approx; related to boosting.
- A simple (and general) way: |β_j| = β²_j/|β̂^(r)_j|; truncate a current estimate |β̂^(r)_i| ≈ 0 at a small ε.
- Coordinate-descent algorithm (§3.8.6): update each β_j while fixing others at the current estimates-recall we have a closed-form solution for a single β_j! simple and general but not applicable to grouping penalties.
- (8000) ADMM (Boyd et al 2011). http://stanford.edu/~boyd/admm.html
- (8000) For TLP: iterating b/w Difference of Convex (DC) (or MM alg.) and (weighted) lasso

Inference

- Q: How to get a p-value or CI for a predictor? Challenges: biased estimates; selection bias
- Sample splitting (to two parts): 1. using the training data for (Lasso) penalized reg (for VS); 2. using the validation data to fit the selected model for inference by OLSE or MLE. Refs: Wasserman & Roeder (2009, AoS); Meinshausen, Meier & Bühlmann (2009, JASA).
 - +: simple; more general.
 - -: loss of efficiency. Better with repeated/multiple splitting. R package: hdi, function multi.split() or hdi().
- Debiased/de-sparsified lasso (or lasso projection): next page. R package: hdi, function lasso.proj().

Ref: Dezeure et al (2015, Stat Sci). https://arxiv.org/pdf/1408.4026.pdf Example: ex3.4.R

(8000) Lasso projection

. . .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

For
$$p > n$$
, use Lasso to get $Z^{(j)}$, then $P_{jk} \neq 0$.
 $\hat{\beta}_{C,j} = \hat{b}_j - \sum_{k \neq k} P_{jk} \hat{\beta}_k$,
 $\hat{\beta}$: Lasso estimates.
 $\hat{\beta}_{C,j} \sim N(0, v_j)$.

Inference

(8000) TLP/SCAD: if interested in β_j (that can be high-d for TLP),

1. use the whole sample to fit a penalized reg model by penalizing all parameters **except** β_j ; 2. apply the usual Wald or LRT to get the p-value or CI for β_j . Refs: Zhu, Shen & Pan (2020, JASA); Shi et al (2019, AoS).

(8000) Model-X Knockoffs: FDR control for VS.
 R package: knockoff.

https://web.stanford.edu/group/candes/knockoffs/ index.html

(8000) Conformal inference: can give prediction intervals; ...
 R package: https://github.com/ryantibs/conformal

Sure Independence Screening (SIS)

- Q: penalized (or stepwise ...) regression can do automatic VS; just do it?
- ▶ Key: there is a cost/limit in performance/speed/theory.
- Q2: some methods (e.g. LDA/QDA/RDA) do not have VS, then what?
- ▶ Going back to basics: first conduct VS in marginal analysis,
 1) Y ~ X₁, Y ~ X₂, ..., Y ~ X_p;
 2) shows a factor of the second seco

2) choose a few top ones, say p_1 ;

 p_1 can be chosen somewhat arbitrarily, or treated as a tuning parameter

3) then apply penalized reg (or other VS) to the selected p_1 variables.

Called SIS with theory (Fan & Lv, 2008, JRSS-B).
 R package SIS;
 iterative SIS (ISIS); why? a limitation of SIS ...

Using Derived Input Directions

 PCR: PCA on X, then use the first few PCs as predictors. Use a few top PCs explaining a majority (e.g. 85% or 95%) of total variance;

of components: a tuning parameter; use (genuine) CV; Used in genetic association studies, even for p < n to improve power.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- +: simple;
- -: PCs may not be related to Y.

Partial least squares (PLS): multiple versions; see Alg 3.3. Main idea:

1) regress Y on each X_i univariately to obtain coef est ϕ_{1i} ;

- 2) first component is $Z_1 = \sum_j \phi_{1j} X_j$;
- 3) regress X_j on Z_1 and use the residuals as new X_j ;
- 4) repeat the above process to obtain Z_2 , ...;
- 5) Regress Y on Z_1 , Z_2 , ...
- Choice of # components: tuning data or CV (or AIC/BIC?)

 Contrast PCR and PLS: PCA: max_α Var(Xα) s.t. ...; PLS: max_α Cov(Y, Xα) s.t. ...; Continuum regression (Stone & Brooks 1990, JRSS-B)

 Penalized PCA (...) and Penalized PLS (Huang et al 2004, BI; Chun & Keles 2012, JRSS-B; R packages ppls, spls).

Example code: ex3.2.r

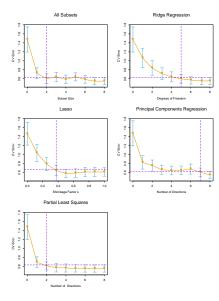


FIGURE 3.7. Estimated prediction error curves and their standard errors for the various selection and $\mathbb{P} \times \mathbb{R} \to \mathbb{R} \to \mathbb{R}$