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Big Data and ML/DL/Al

» Big Data is on the rise, bringing big questions (WSJ,
11-29-2012)

» Big data: the next frontier for innovation, competition, and
productivity (McKinsey report 05-2011)

» Big Data’s big problem: little talent (WSJ, 04-29-2012)

» Example: Google Flu Trends (GFT); “Nowcast”
Ginsberg et al (2009). Detecting influenza epidemics using
search engine query data. Nature, 457:1012-1014. https:
//www.nature.com/articles/nature07634#M0OESM269


https://www.nature.com/articles/nature07634##MOESM269
https://www.nature.com/articles/nature07634##MOESM269

Mean correlation

An evaluation of how many top-scoring
queries to include in the ILI-related query fraction.
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ILI percentage

A comparison of model estimates for the mid-Atlantic
region (black) against CDC-reported ILI percentages (red),
including points over which the model was fit and validated.
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ILI percentages estimated by our model (black) and provided
by the CDC (red) in the mid-Atlantic region, showing data
available at four points in the 2007-2008 influenza season.
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Impressive!

But now? GFT was long gone...

Lazar et al. (2014). The Parable of Google Flu: Traps in Big
Data Analysis. Science, 343(6176): 1203-5.

All-data!

Yang et al. (2015). Accurate estimation of influenza
epidemics using Google search data via ARGO. PNAS, 112:
14473-8.
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Aiken et al. (2020). Real-time estimation of disease activity in
emerging outbreaks using internet search information. PLOS
Comp Biol, 16(8): €1008117.



Data Science

» “Data Science” (Cleveland 2001/2014)

» How is this related to statistics?
Breiman (2001). Statistical modeling: the two cultures. Stat
Sci, 16:199-231.
Inference vs prediction!
Change and expand the subjects
» Computing:
Hadoop (or RHadoop), MapReduce, Spark, ...
» You do not need to do everything ...
DeltaRho (formerly, Tessera): interface b/w R and Hadoop...
http://deltarho.org/

R packages datadr, trelliscope
Based on “Divide and Recombine” (D&R) (Guha et al 2012).

» So ...still need to go back to the basics of ...!


http://deltarho.org/

DL/ML/Al

» Harvard Business Review Oct 30, 2019: “Al Can Outperform
Doctors...”
“Medical artificial intelligence (Al) can perform with
expert-level accuracy and deliver cost-effective care at scale.
IBM'’s Watson diagnoses heart disease better than
cardiologists do. Chatbots dispense medical advice for the
United Kingdom’s National Health Service in lieu of nurses.
Smartphone apps now detect skin cancer with expert
accuracy. Algorithms identify eye diseases just as well as
specialized physicians. Some forecast that medical Al will
pervade 90% of hospitals and replace as much as 80% of what
doctors currently do.”

> “...So Why Don't Patients Trust It?"



Introduction

>

>

Focus: prediction or discovery.
Approach: build a model (x).

Types: supervised vs unsupervised vs semi-supervised learning.
Training data: with vs without known response values vs a
mixture of both.

Supervised learning: classification vs regression.

Training data: (Y;, Xi)'s; Y is categorical (e.g. binary) vs
quantitative.

X;: typically multivariate and mixed types.

Tuning and test data: (Y;, Xj)'s;

Future use: only Xj's.



Examples

> Example 1. X,-O: an email; Y; = 0 or 1, indicating whether it is
a junk email; i =1,...,4601.

P Feature extraction: e.g. use some key words in emails as Xj;
manually.
Automated: word/sentence embedding by DL?

» A classification problem: use a 0-1 loss, build a model
f(x) € {0,1}, calculate misclassification rate,...

» Loss function: here a false positive is much more costly than a
false negative.



Example 2. Predict prostate specific antigen (PSA) using
some lab measurements.

A regression problem.
Example 3. Handwritten digit recognition.
X?: a 16 by 16 black/white image (= a 16 by 16 binary

1
matrix); Y; € {1,2,...,9}.
X;: maybe (vectorized) X?, or better, its summary stat’s, e.g.
marginal histograms or numbers of " crossing changes” ...
manuually

automated: CNNs/DL.
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Ezamples of handwritten digits from

FIGURE 1.2.

U.S. postal envelopes.
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Example 4. Microarray gene expression data.

Xi: 6830 genes' expression levels; quantitative;
Y;: tumor types.

A typical “smalll n, large p" problem: n =64 vs p = 6830.
A classification problem.

Can be an unsupervised learning problem: finding subtypes of
cancer.

only use X;'s to find new class labels Y;*; clustering analysis.

Can be a semi-supervised learning problem: some known and
possibly novel subtypes of cancer.



Overview

» Consider two popular, yet simple and extreme methods: LR vs
NN;
parametric vs non-parametric.

» Q: Is a non-parametric method better than a parametric one?
or reverse?

» Consider simulated data: (Y}, X;), Y; =0o0r 1 and X;
bivariate; 100 obs's in each class (as training data).

> LR: E(Yi|Xi) = Pr(Yi =1|X;) = Bo + X/ 5;
l{se LS to estimate 8's — Y = Pr(Y; =11X);
Y: =1(Y; > 0.5).

» Decision boundary: Y(x) = 8o + X3 = 0.5, linear.
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Linear Regression of 0/1 Response

FIGURE 2.1.

A classification example in two di-
MENSIONS.

The classes are coded as a binary variable
(BLUE = 0, ORANGE = 1), and then fit by linear re-
gression. The line is the decision boundary defined by
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kNN: N () is the k nearest training data points that are
closest to x,

A~

Y(x) = % ST Y= Pr(Y; =1|X).
X,'ENk(X)

Idea: using local "smoothness” to estimate the population
mean by ...

Key: choice of k, or how much “smoothness” is to be
assumed; do not know!

Modeling assumption: larger k, higher or lower model
complexity?

Try a few values of k, then ...



Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 2

15-Nearest Neighbor Classifier

FIGURE 2.2. The same classification example in two
dimensions as in Figure 2.1. The classes are coded as
a binary variable (BLUE = 0, 0RANGE = 1) and then fit
by 15-nearest-neighbor averaging as in (2.8). The pre-
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1-Nearest Neighbor Classifier

FIGURE 2.3. The same classification ezample in two
dimensions as in Figure 2.1. The classes are coded as
a binary variable (BLUE = 0,0RANGE = 1), and’then



Key Q: which kNN (and LR) to use?

Key: cannot use the training data to compare models!
Why not? too optimistic, favoring ...
Recall: how to estimate the noise variance in linear regression?

How? use a separate test dataset, or CV, or some model
selection criterion (if any).

Key: test data should not be used in model building!

Q: how about AIC, BIC ,...

Previous example: generate a new test dataset with
n =10, 000.
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FIGURE 2.4. Misclassification curves for the simula-
tion example used in Figures 2.1, 2.2 and 2.53. A single
training sample of size 200 was used, and a test sample
of size 10,000. The orange curves are test and the blue
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Q: is there a best classifier?

Ideal situation: if we know the data distribution, then use the
Bayes rule:
ko = arg max Pr(k|x).

An example: 1) prior mx = Pr(k); 2) PDF of class k,
fi(x) = f(x|k), then

7I‘kfk(X)

>oimifi(x)

If fi is assumed to be Normal, then LDA or QDA.
LR and kNN are also estimating Pr(k|x).

Pr(k|x) =

Bayes rule: offering a theoretical lower bound of the test error
rate; often unknown.

Previous example: R code example 2.1.
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Bayes Optimal Classifier

FIGURE 2.5. The optimal Bayes decision boundary
for the simulation example of Figures 2.1, 2.2 and 2.3.
Since the gemerating density is known for each class,
thioc horndaryr can he calealated evactly (Forereice O O)



Q: for real data, often cannot generate new data; how to
evaluate models?

Use sample splitting: divide the original whole dataset into
two parts, (e.g. 1/2 or 2/3) for training and (the remaining)
for test.

efficient?

Use cross-validation (CV); read §7.10

K-fold CV: Divide the data D into almost equally sized and
none-overlapping D;,...,Dk, then

K
CVerr=> " > L[Y;,f(X|D - D))]/n.
=1 (Y;,X;))eDh;
Leave-One-Out-CV (LOOCV): K = n.

Remarks: 1) not necessarily larger K, the better; CV related
to AIC/BIC; 2) maybe better to use bootstrap (§7.11).

Previous example: R code example 2.1.



Example 1: goal: need to train a model and estimate its test
error.

Way 1: splitting the whole sample into a training subset and a
test subset;

Way 2: applying CV to the whole sample.

Example 2: goal: need to tune/select a model.

Way 1: splitting the whole sample into training and tuning
subsets;

Way 2: applying CV to the whole sample.

Example 3: goal: need to tune/select a model and estimate
the test error.

Way 1: splitting the whole sample into training, tuning and
test subsets;

Way 2: splitting the whole sample into training and test
subsets, then using CV on the training subset.

After applying CV to a training dataset (to select the tuning
parameter value), one would often refit the model to the
whole training dataset with the selected tuning parametr
value. Why?



> Key: celebrated bias-variance trade-off!

» Suppose fis any estimate of f,

MSE = E[(f - f)’] = E[(f - E(f)+ E(f) - £)°]
= E[(f— EF)’]+ E[(Ef — f)?]
Var + Bias?.

> Very very useful: helps explain
i) Complex models vs simple models;
ii) Nonparametrics vs parametrics; ...

» Perhaps the most important plot in the course:
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FIGURE 2.11. Test and training error as a function
of model complexity.



» Remark: there is an emerging theory of a double-dip
(W-shaped) generalized/test error curve, instead of the classic
single-dip (U- or V-shaped) one.

DL;
Ref: Belkin et al. (2018).
https://arxiv.org/abs/1812.11118


https://arxiv.org/abs/1812.11118

Q: If the test error rates are 0.1 and 0.2 for two

methods/models, is the first one better?

Generalization error: for a new/future data point (X*, Y*),

§E(f) = E[L(Y™, F(X*))] = E[I(Y" # £(X7)) = P(Y" #
FIX*)] = p.

Given a test dataset {(Xj, Yj) : i
TE(F) = 27, LV, F(X ))/n =

B~ N(p, p(1 - p)/n).

Var(p) = p(1 - p)/n.

To compare p; and po, need to consider their var.

e.g. construct their 95% Cls

BUT, ...

use a paired-t-test, or McNemar's test.

sy NN},
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