Deep Learning Basics: Feedforward Neural Networks and Convolutional Neural Networks

Wei Pan

Division of Biostatistics and Health Data Science
School of Public Health, University of Minnesota
Email: panxx014@biostat.umn.edu

PubH 8475/Stat 8056
Chapter 11. only on Feedforward NN (FNN). Also called Fully Connected NN (FCN) and Multi-Layer Perceptron (MLP):
\[f(x) = \sigma_1(W_M \ldots \sigma(W_3 \sigma(W_2 \sigma(W_1 x)))) \],
where \(\sigma(.) \) and \(\sigma_1 \) are some (simple) non-linear activation functions; each \(W_m \) is a matrix of weights as unknown parameters.
Related to projection pursuit regression (PPR) (§11.2):
\[f(x) = \sum_{m=1}^{M} g_m(w'_m x) \],
where each \(w_m \) is a vector of weights and \(g_m \) is a smooth nonparametric function; to be estimated. really?
GAM: \(f(x) = \sum_{j=1}^{p} g_j(x_j) \) (as if \(w_j = e_j \) in PPR) (§9.1).

Here: + CNN; later recurrent NNs (for seq data).
http://www.deeplearningbook.org/
Two high waves in 1960s and late 1980s-90s.

McCulloch & Pitts model (1943):
\[n_j(t) = I(\sum_{i \rightarrow j} w_{ij} n_i(t - 1) > \theta_j). \]
w_{ij} can be > 0 (excitatory) or < 0 (inhibitory).

A biological neuron vs an artificial neuron (perceptron).

Perceptron:
\[f = I(\alpha_0 + \alpha' X > 0). \]

Cognitive science: human vision is performed in a series of layers in the brain.

Human can learn.

Hebb (1949) model:
\[w_{ij} \leftarrow w_{ij} + \eta y_i y_j, \]
reinforcing learning by simultaneous activations.
Feed-forward NNs

- Fig 11.2. Input: X
- A (hidden) layer: for $m = 1, \ldots, M$,

 $$
 Z_m = \sigma(\alpha_{0m} + \alpha'_m X), \ Z = (Z_1, \ldots, Z_M)'.
 $$

 activation function: $\sigma(v) = 1/(1 + \exp(-v))$, sigmoid (or logit$^{-1}$); Q: what is each Z_m?

 hyperbolic tangent: $tanh(v) = 2\sigma(v) - 1$.

 ... (may have multiple (hidden) layers)...

- Output: $f_1(X), \ldots, f_K(X)$.

 $$
 T_k = \beta_{0k} + \beta'_k Z, \ T = (T_1, \ldots, T_K)',
 $$

 $f_k(X) = g_k(T)$.

 regression: $g_k(T) = T_k$;

 classification: $g_k(T) = \exp(T_k) / \sum_{j=1}^{K} \exp(T_j)$; softmax or multi-logit$^{-1}$ function.

- More generally, L-hidden layers: $f(W_L \sigma_0(\ldots \sigma_0(W_1X))))$.

 W_j: $p_j \times p_{j-1}$ (unknown) weight parameter matrix.

 DL: large L.
FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.
FIGURE 11.3. Plot of the sigmoid function \(\sigma(v) = \frac{1}{1 + e^{-v}} \) (red curve), commonly used in the hidden layer of a neural network. Included are \(\sigma(sv) \) for \(s = \frac{1}{2} \) (blue curve) and \(s = 10 \) (purple curve). The scale parameter \(s \) controls the activation rate, and we can see that large \(s \) amounts to a hard activation at \(v = 0 \). Note that \(\sigma(s(v - v_0)) \) shifts the activation threshold from 0 to \(v_0 \).
How to fit the model?

Given training data: \((Y_i, X_i), i = 1, \ldots, n\).

For regression, minimize
\[
R(\theta) = \sum_{k=1}^{K} \sum_{i=1}^{n} (Y_{ik} - f_k(X_i))^2.
\]

For classification, minimize
\[
R(\theta) = -\sum_{k=1}^{K} \sum_{i=1}^{n} Y_{ik} \log f_k(X_i).
\]
And \(G(x) = \arg \max f_k(x)\).

Can use other loss functions.

How to minimize \(R(\theta)\)?
Gradient descent, called back-propagation.
§11.4
Very popular and appealing! recall Hebb model

Other algorithms: Newton’s, conjugate-gradient, ...
Back-propagation algorithm

- **Given**: training data \((Y_i, X_i), i = 1, ..., n\).
- **Goal**: estimate \(\alpha\)'s and \(\beta\)'s.

 Consider \(R(\theta) = \sum_i \sum_k (Y_{ik} - f_k(X_i))^2 := \sum_i R_i := \sum_i r_i^2\).

- **NN**: input \(X_i\), output \((f_1(X_i), ..., f_K(X_i))'\).

 \[Z_{mi} = \sigma(\alpha_0 + \alpha'_m X_i), \quad Z_i = (Z_{1i}, ..., Z_{Mi})',\]
 \[T_{ki} = \beta_{0k} + \beta'_k Z_i, \quad T_i = (T_{1i}, ..., T_{Ki})',\]
 \[f_k(X_i) = g_k(T_i) = T_{ki}.\]

- **Chain rule**:

 \[
 \frac{\partial R_i}{\partial \beta_{km}} = \frac{\partial R_i}{\partial r_i} \frac{\partial r_i}{\partial g_k} \frac{\partial g_k}{\partial T_i} \frac{\partial T_i}{\partial \beta_{km}}

 \frac{\partial R_i}{\partial \beta_{km}} = -2(Y_{ik} - f_k(X_i))g'_k(\beta'_k Z_i)Z_{mi} := \delta_{ki} Z_{mi},
 \]
Back-propagation algorithm (cont’ed)

\[
\frac{\partial R_i}{\partial \alpha_{ml}} = \frac{\partial R_i}{\partial r_i} \frac{\partial r_i}{\partial g_k} \frac{\partial g_k}{\partial T_i} \frac{\partial T_i}{\partial Z_i} \frac{\partial Z_i}{\partial \alpha_{ml}}
\]

\[
\frac{\partial R_i}{\partial \alpha_{ml}} = - \sum_k 2(Y_{ik} - f_k(X_i))g'_k(\beta'_k Z_i)\beta_{km}\sigma'(\alpha'_m X_i)X_{il} := s_{mi}X_{il}.
\]

where \(\delta_{ki}, s_{mi} \) are “errors” from the current model.

Update at step \(r + 1 \):

\[
\beta^{(r+1)}_{km} = \beta^{(r)}_{km} - \gamma_r \sum_i \frac{\partial R_i}{\partial \beta_{km}} \bigg|_{\beta^{(r)}, \alpha^{(r)}} , \quad \alpha^{(r+1)}_{ml} = \alpha^{(r)}_{ml} - \gamma_r \sum_i \frac{\partial R_i}{\partial \alpha_{ml}} \bigg|_{\beta^{(r)}, \alpha^{(r)}}.
\]

\(\gamma_r \): **learning rate**; a tuning parameter; can be fixed or selected/decayed. too large/small then ...

training **epoch**: a cycle of updating
Some issues

- Starting values:
 Existence of many local minima and saddle points.
 Multiple (random) initializations; model averaging, ...
 Data preprocessing: centering at 0 and scaling;
 batch normalization; Glorot-normal distribution

- Stochastic gradient descent (SGD): use a minibatch (i.e. a random subset) of the training data for a few iterations;
 minibatch size: 32 or 64 or 128 or ..., a tuning parameter.

- +: simple and intuitive; -: slow

- Modifications: SGD + Momentum
 SGD: \(x_{t+1} = x_t - \gamma \nabla f(x_t) \).
 SGD+M: \(v_{t+1} = \rho v_t + \nabla f(x_t), \quad x_{t+1} = x_t - \gamma v_{t+1} \).
 ... (AdaGrad, RMSProp) ... Adam, default (now!)
Some issues (cont’ed)

- Over-fitting? Universal Approx Thm
 If add more units or layers, then...
 1) Early stopping!
 2) Regularization: add a penalty term, e.g. Ridge; use $R(\theta) + \lambda J(\theta)$ with $J(\theta) = \sum_{km} \beta_{km}^2 + \sum_{ml} \alpha_{ml}^2$; called **weight decay**; Fig 11.4.
 Performance: Figs 11.6-8
 3) Regularization: **Dropout** (randomly) a subset/proportion of nodes/units or connections during training; an ensemble; more robust.

- A main technical issue with a deep NN: gradients vanishing or exploding, why?
 use **ReLU**: $\sigma(x) = \max(0, x)$; batch normalization;

- **Transfer learning**: reusing trained networks: why?

- Example code: ex7.1.r
Neural Network - 10 Units, No Weight Decay

Training Error: 0.100
Test Error: 0.259
Bayes Error: 0.210

Neural Network - 10 Units, Weight Decay=0.02

Training Error: 0.160
Test Error: 0.223
Bayes Error: 0.210
FIGURE 11.6. Boxplots of test error, for simulated data example, relative to the Bayes error (broken horizontal line). True function is a sum of two sigmoids on the left, and a radial function is on the right. The test error is displayed for 10 different starting weights, for a single hidden layer neural network with the number of units as indicated.
FIGURE 11.7. Boxplots of test error, for simulated data example, relative to the Bayes error. True function is a sum of two sigmoids. The test error is displayed for ten different starting weights, for a single hidden layer neural network with the number units as indicated. The two panels represent no weight decay (left) and strong weight decay $\lambda = 0.1$ (right).
FIGURE 11.8. Boxplots of test error, for simulated data example. True function is a sum of two sigmoids. The test error is displayed for ten different starting weights, for a single hidden layer neural network with ten hidden units and weight decay parameter value as indicated.
Current and future ...

- **Deep learning**: deep NNs (Wikipedia; google)
- Impressive applications: imaging recognition (Krizhevsky et al); playing the game of Go (Silver et al 2016, Nature); ...; ChatGPT, ...
- Keys: AlexNet (Krizhevsky et al),
 “60 million parameters ... of five convolutional layers ... three fully-connected layers with a final 1000-way softmax.”
 ”there are roughly 1.2 million training images, 50,000 validation images, and 150,000 testing images.”
 Needs **regularization** too!
- Qs: another wave? yes! just check constantly appearing papers on arXiv, ICLR, NeurIPS, ...
Revolution of Depth

152 layers

ILSVRC'15 ResNet
ILSVRC'14 GoogleNet
ILSVRC'14 VGG
ILSVRC'13
ILSVRC'12 AlexNet
ILSVRC'11
ILSVRC'10

ImageNet Classification top-5 error (%)

(slide from Kaiming He’s recent presentation)
Convolutional NNs

- Keys: “to ensure some degree of shift, scale, and distortion invariance: local receptive fields, shared weights ... and spatial or temporal sub-sampling.”
- “Local correlations are the reasons for the well-known advantages of extracting and combining local features ...”
- Hubel and Wiesel (1962): locally-sensitive, orientation-selective neurons in the cat’s visual system.
- New: a convolution layer uses rectified linear function,

\[\text{ReLU}(x) = \max(0, x). \]
Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

Figure: LeCun et al 1998, *Proc of the IEEE.*
Figure: Angermueller et al 2016, Mol Sys Biol.
Resources

▶ Today’s ”standards”: mostly in Python
1. Caffe (UC Berkeley) ➞ Caffe2 (Facebook);
2. Torch (NYU/Facebook) ➞ PyTorch (Facebook);
3. Theano (U Montreal) ➞ TensorFlow (Google);
3b. Keras: on top of TensorFlow.
Others: MXNet (Amazon), Paddle (Baidu), CNTK (Microsoft)...

▶ CPU vs GPU

▶ R packages: deepnet, darch, mxnet, h2o, ...
 now: Keras