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Outline

» Reconstruction of an undirected graph:
Gaussian graphical model (GGM)

v

Inference for an undirected graph

v

Reconstruction of multiple (related) undirected graphs
Reconstruction of a directed acyclic graph (DAG):

> Observational data;
> Intervention data.

v



Terminology
» Graph G = (V,E):

> Asetofnodes V ={vy,...,Vp}.

> A set of edges or links between nodes E = {ey, ..., en}-

> Undirected: The edges have no direction, and the edge {i, j} is
the same as the edge {j, i}, i.e. each edge is an unordered pair
of nodes.

> Directed: The edges have direction, and the edge (i, ) is not
the same as the edge (j, i), i.e. each edge is an ordered pair of
nodes.



Adjacency matrix

» Graph G = (V, E) — p x p adjacency matrix
U=1{Uj:1<i,j<p}, where

U [ #0 (i) €E
lo if(i)¢E

» Undirected:
> Uis symmetric, i.e., Uj = Uj.
> U = {Uj}, U; denotes"similarity” between i & j.
> Directed:
> U: symmetric or asymmetric.
> U: directed acyclic graph (no directed cycles) — acyclicity.
> UX = 0: maximum length of directed pathway < k — 1.
Q: what is the meaning of (U¥);?
(UZ)U = 22,21 UirnUmj



Reconstruction of an undirected graph



A graphical model for undirected graphs
> Pairwise relations

> set of p variables & Y = (Y1,-~~ , Yp).
> interactions & conditional dependencies.
> graph:

6=(V.E} v=i1.pl
(],k) e E |if Y/.ﬂ. Yk | Y\{j,k}

> example:

> Vi L Ys|Y2.Va. Y5
> Y1 LYs| Yo, Y3, Va

» Goal: reconstruct G based on ni.i.d.

» Remark: in some applications, 1L may mean (conditional or
marginal) uncorrelatedness.
An example: co-expression networks.



Gaussian graphical model for undirected graphs

> Model: ¥ ~ N(0, ).
» Precision matrix: = (wjk)pxp = >

» Conditional independence:

Yi L Y| Yk © wk=0

@ @ w11 w2 w1z wis 0

w1 woo 0 0 0

0 — N = w3 0 w33 0 0
wsgr 0 0 wa was

@ @ 0 0 0 w54 W55

» Graph connectivity < zero offdiagonals of €2. Estimation of
zeros of €2: covariance selection (Dempster, 1972).



Conditional independence
> Y=(Y1,,Yp) " ~N(O,Z)withx = Q"

: . _ 1 _1yT
» Density of Y: f(y) = ERT) exp(—zy' Qy).
> LetZ = (Y3,~-- , Yp) and X = (Y1, Yg).

X|Z ~ N(ux + (Z = pz) T 2%, Zxx — Lo 2708 7x).

Hx1z=0 Qxx
5o 2 Xxz )’ Q. x Dz
EZX ZZZ QZX QZZ

v

Inverse: Qxx = (wjj)2xe, w12 — (1,2)-entry of Qxx.
Conditional density of X given Z is

v

wi1wa—w?,) 2
f(x|z) = % exp(— 3 (w11Y? + wazy2 + 2wi2y1y2))

-1 1 (2,2 2/ 2
= oy P V15 + 10~ 2preyayel i)

P12
2

2
wjos =
(1*[)12)’ g

. 1
» Note: —W120102 = j m
12

» P12, 0°j — coOrr, var
given Z.

Conditional independence of Yi, Y2 given rest, iff wio = 0.

v



Conditional independence and partial correlation pj

> Express Y

Yi= 2BVt 6

J'#i

Wi

_ e — o )
Bjy = —wjr /wjj = pjy -
Wjj



Neighborhood Selection (Meinshausen & Buhimann, 06)

> A "local" approach:
simpler; less efficient.

» Fit p individual lasso regressions

minllYj = D By el +4 ) 1Byl j=1,....p
i

J'#i I'#i

> Calculate pj = sign(Bj) \/Bj/”/?j’j-



Maximum likelihood

> A "global" approach.
» Regularization is necessary when p > n, Yuan & Lin (07).
> Single Gaussian graphical model: (S: Sample covariance)

(Tr(QS)—Iogdet(Q))—i—/l > loud
1<j<k<p

> Regularization for off-diagonals. Why?
> Estimation of 2 and X differ dramatically in a high-d situation.

4/3 2/3 1/3 1/6 1 -1/2 0 0
> _ 2/3 4/3 2/3 2/3 st _ -1/2 5/4 -1/2 0
1/3 2/3 4/3 2/3|’ 0 -1/2 5/4 -1/2|’
1/6 1/3 2/3 4/3 0 0 -1/2 1
> Yuan & Lin (07) uses an interior point method.
> Fast algorithms are developed by Friedman et al. (GLasso,

08), and Hsieh et al.(QUIC, 2013), ...



Graphical Lasso (GLasso)

» Gaussian graphical model:

v

Regularized negative log-likelihood function for @ = X" is
proportional to

(Tr(QS) —log det(ﬂ)) +4 Z lwjk|. (1)
1<j<k<p
> Note: Y1<jck<p lwjkl = [I€2l[1—the Ly-norm.

» When p is large or close to sample size, the sample
covariance S is not a stable estimate:

Ref: Friedman, Hastie and Tibshirani (07).

v



Numerical examples, GLasso

install.packages("glasso")
library(glasso)
set.seed(100)
s=c(10,1,5,4,10,2,6,10,3,10)
S=matrix(0®,nrow=4,ncol=4)
S[row(S)>=col(S)]=s
S=(S+t(S))
diag(S)<-10
%  zero<-matrix(c(1,3,2,4),ncol=2,byrow=TRUE)
% a<-glasso(S,rho=0.01,zero=zero)
a<-glasso(S,rho=1)
a



Lo-regularization (Shen, Pan & Zhu, 12)

v

Likelihood:

(Tr(QS) — log det(ﬂ)) +1 > Hwy #0).
1<j<k<p

v

Idea: Same as before. Replace I(wj # 0) by truncated
Ly-function (TLP) J;(x) = min(%, 1).

Computation: DC programming+any convex method.

R package MGGM: Structural Pursuit Over Multiple Undirected

Graphs
https://rdrr.io/cran/MGGM/

v

v


https://rdrr.io/cran/MGGM/

Inference for undirected graphs



Inference for Graphical Models

» Hypothesis test: Hy : 25 =0vs Hy : Q2 # 0, B ={(i,j)} isan
index set to be specified.

» Example:
> If B = {(1,2)}, then QB = w12, O

Hy:wi2 =0, vs Hy:wi #0.

> 1f B ={(1,2),(1,3), .(1,p)}, then Qg = (wiz, wra, -  wip)T,
or
Ho:a)12:~-:a)1p:0, VS Ha:not.

> Issues:
> How to make a high-dimensional inference, when p,|B| — c0?
> How to treat overparametrized models, when # par > n?
> Can we use tests in a low-dimensional situation? Any
modifications are needed?



Literature

> Inference for GGM. Jankova & van de Geer (2016)
> Debiased Lasso approach (Zhang & Zhang, 14): Bias
correction for low-d parameters.
» Debiased GLasso
> Glasso: {2 = arg minQ( r(QS) —log det(Q))—F/lZKjgkgp lwik|
> F=01 (Q-080), =0,
——————
bias corr

> Asym \/_(T,, Qj)/oj — N(0,1) when A ~ +/log p/n, where
= Var(T)).

> Issues: How to utilize dependence of multi-components?



Constrained likelihood ratio (Zhu, Shen, & Pan, 20)

> Regularizing only nuisance parameters.
> Higher test efficiency for testing multiple parameters.
» Reducing potential bias due to regularization.

> Test:
Ho:wj=0,(i,j)e B (28 =0) vs Hy:3(i,j) € B,wj#0.
Constrained MLEs Q(%) (Hy) & QD (H,):

an - argming, woyl)<k T(SR) — log det(2),

e JIT(

> Jr(z) = min (%, 1), TLP (Truncated Li-penalty).

» Estimate (K, 7) by a cross-validation (CV) criterion based on
the full model.



Null distributions

» Under regularity conditions on p, n,|B|, and Q°,
> Asymptotic normality: If |B] is fixed,

= d
Vva@ - %) 5 N, s ),
——
Fisher info

> Wilk’s Theorem: If wj = 0 for (i,j) € B & |B] is fixed, then

— — d
2[Ln(Q“)) - Ln(Q(O))] _’Xﬁgr

> Generalized Wilk's Theorem: If w; = 0 for (i,j) € B & |B| = oo
as n — oo, then

(2181 "2|2[La(@1) - Lo(@)] - 11| - N(o. 1)



Comments

> LR tests (can handle varying dimensions) are more preferable
in terms of the power compared to the debias-test. The
asymptotic distribution can be the y? or normal depending on
the degrees of freedom.

> (Generalized) Wilk’s Theorem is generalized to a high-d
situation provided that nuisance parameters have sparse
structures.



Reconstruction of multiple undirected
graphs



Example: Multiple networks of 4 subtypes of cancers

\{

11,861 genes

v

200 patients

@ @®
Classical

—®

4 subtypes \ 7

multiple networks

v

v

v

similar overall
structure

Proneural




Multiple Gaussian graphical models

> Motivation: Data contains sub-populations

» Model: independent

YO Y ON@, )=, L

> Graphs:

g1 s " gL
» Parameters of interest:

Q=3
> Assumptions: €4,---,€; are similar.

» Goal: Encourage similarity among €2/’s.



Multiple Gaussian graphical models
> Model: YO, ¥ < N0, Q1)1 =1, L
» Joint log-likelihood:

L
Z %( Tr(4S)) + log det(Q,))

> Penalty for Sparsity:

L
Z Z Jr (lwjwl)

1<j<k<p I=1

Z Je(lwj — wjer)

1<j<k<p I~I

> Penalty for grouping:

» Grouping over graph G* = (V*, E*):

’V*—{, L I~T e (L) eE
{ LEYII=F]< 1} — serial (fused) graph
={(1.") 11 <1<V <L} — complete graph



Lo-regularization—Truncated ¢; penalty’

> Non-convex penalty: truncated ¢ penalty (TLP)

Jr(x) = min[m, 1], >0
T

> Relation to ¢y:
lim J;(x) =1I(x # 0)

-0

> Advantages over {4:

> better model selection
> nearly unbiased

'Shen, Pan \& Zhu, 2012.



Multiple Gaussian graphical models

» Penalized maximum likelihood:
L
n
Z il Tr($4S) |0gdet(91))+ Z ij(wjm,“' ,wjkL)
=1 1<j<k<p

» Zhu, Shen & Pan (2014):
» TLP + nonconvex grouping:

L L
pjk(wjkh w]kL =44 Z JT |w,k/| + A2 Z J‘r(lekl - U)jkl’l)

=1 I~r

» (Convex) Lasso version:

L L
ij(wjm,"' ,wjkL) =4 Z lwi| + A2 Z lwjk — wikr |



Causal discovery: DAG reconstruction



Directed acyclic graphical (DAG) model
> A DAG is a directed graph without directed cycles.

> Nodes correspond to primary variables (Y1, -, Yp).
> Directed edges represent causal (parent-child) relations,

I Adjacency matrix:
A B D

C E

. A 0 0 0 0 O

: B 0 0 0 0 O

q )/@ C = 0 0 0 O

@ DO + 0 0 0

E 0 0 = = O

» Local Markov Property specifies a DAG: given its parents, a

node is conditionally independent of its non-descendants.

Yj = fj(Ypa(j),sj)a j: ‘I,...,p,

pa(j): parent variables of Yj; g;: error.



Terminology

> Parent-child relation: Y; is a parent of Yj: Y; — V;.

» Leaf: no children (terminal node). Root: No parent.

> Ancestral relation: Y; is an ancestor of Y; if a v-directed
pathway Yi= Yy, = Yk, = ... > Y, = Yjv>21:Yiw V.

> Immediate parent-child relation: v < 2, Y; = Y;. Special case
of ancestral relation.

> Ex:Yiw Y, Y= Y= Y= Y.

Y1 7)) N >(Y4 @




Why DAG models?

» Causal relations modeling:

> Tools for mediation analysis:
Exposure—Mediators—Outcome.

» Applications:
> Brain network analysis: Effective connectivity of ROI's—casual
influences between neurons to explain regional effects in
terms of interregional connectivity.
> Gene regulatory networks: Regulatory relations between
genes.
> Insurance, Marketing, Decision support systems, ...

> Bayesian or causal networks.



Brain network analysis example

» Functional
connectivity

> 30 regions of
interest




Cell signaling example

A A
paktsd73 |+——————— paa.a2
N

A4

> 11 proteins
> 20 edges




Gaussian models

> Structural equations:

Yj:ZlekYk+8j, Sllr’LdN(O,O'}z), j:1’---9ps (2)
k7

» Parameter: U = (Uj) is a real-valued adjacency matrix.

» Causal discovery (Structure learning): Reconstruction of a
DAG from data

> Estimation of U & casual order of Yy,---,Y,
simultaneously—challenging, could be high-dimensional
(p > n).

> Can this be done? To what extent? Identifiability.



Identifiability
» Equal variances: If oy = --- = 0 = o, U is identifiable
(Peters & Bihlmann, 13).
> Example: given Y; ~ Ys, what is the causal direction?
> |. Hidden confounding: Y; &< Z = Y-.
> |I. No hidden confounding (in the current context):
i) If Y1 &= Y,, then
Yi = YoBo1 + & and Y2 = e,
var(Y1) = var(YzPBz1) + var(e) > var(e) = var(e) = var(Yz).
i) If Yy = Y, then ...
> Remarks: it will be easier if i) €’s are not normal, or ii)
relationships are non-linear.
ii): Additive noise model (ANM),
If in truth Yy = f(Y2) + €1 with € indep of Yz, then
cannot write Y2 = g(Y1) + e with & indep of Y.
Example: If Y1 = Y2 + e, then Yo = VY] — ¢ = ...
In practice, fit a nonparametric reg model, then test the
independence b/w the residuals and the predictor (Jiao et al
18).



Existing methods for observational models

» Search-and-score: Use a model selection criterion to
enumerate directions stepwisely.
Hill Climbing (HC, Korb & Nicholson, 03), Entropy (De
Campos,07).
Comments: Super-exponential candidate DAGs: O(pP), lack
of theory.

> Test-based: Sequential independence tests through edge
deletion.
PC (Spirtes & Glymour, 00).
Comments: Super-exponential tests in the worst case:O(pP),
Strong faithfulness assumption: restrictive (Uhler et al., 13).

» L4-regularization: Identify links and choose possible
directions.
Fu & Zhou (JASA, 13), Huang, et. al (IEEE, 13).

» Challenges:
Computation: Infeasible. Super-exponential DAGs (roughly
p!2p2, p is # node). Statistical accuracy: Low due to a huge
number of enumerations.



PC algorithm for DAG skeleton

> Principle:

> If no edge exist between X; & X> (no local Markov property), in
either direction, then X; is neither Xs’s parent nor its child. But
any variable is independent of its non-descendants given its
parents. Thus X; L X5|S for some set of variables S.

> Suppose the converse is true: if X; L X5|S, then there cannot
be an edge between X; and X,. So there is an edge between
Xi and X iff we cannot make dependence between them to go
away, no mater what we condition on.



PC algorithm for DAG skeleton

» Start with a complete undirected graph (with an edge b/w any
two nodes).

> For each pair X1 and Xy, see if Xy L Xo. If so, remove the
edge between X; and Xo.

> For each X; and X5 that are still connected, and each third
variable Z; see if X; L Xo|Z. If so, remove the edge between
X1 and X2.

» For each X; and X5 that are still connected, and each third or
fourth variables Z; and 2o, see if Xy L Xo|Z1, Z». If so, remove
their edge.

» For each Xj and X that are still connected, see if Xy L X5
given the p — 2 other variables. If so, remove their edge.



PC algorithm
> Skeleton of a DAG: an undirected graph ignoring directions of
arrows.
» Identifying the skeleton:
> From complete graph G, | = -1,
> | =1]+1,
> repeat
> select (new) ordered pair of adjacent nodes X;, X; € G.
> select (new) neighborhood N of X; with size I (if possible)
> if X, Xz are conditional independence given N, save N € M;
delete edge Xi, Xz € G.
> until all ordered pairs have been tested; until all neighborhoods
are of size smaller than /.

» Finding the DAG: The skeleton can be directed using some

rules.

s

> Test Ho: px, x,n = O vs Ha. Test stat: Z = J 'Og(%)’
1.X2

reject if vn—|N[-3|Z| > ~1(1 — «/2) for significance a, p:
Sample partial correlation.

> Fisher’s transformation: Z ~ N(0,1/+/n— N[ - 3) under Hy
assuming normality between Xi, Xo given N.



PC algorithm, Consistency

vV v.v. v Yy

(n, p): Sample size, # nodes,

Distribution: (Xi,---, Xp) ~ N(0, X).

Nodes: p = O(n?) with 0 < a < oo,

Max # neighbors: O(n'~?) with 0 < b < 1 (sparse),
Strong faithfulness: S c V \ {i,j},

min{|Corr(X;, Xj|Xs)| : Corr(X;, Xj|Xs) # 0} > «;
I’]

where k = O(n™9) (larger than n"/2),0 < d < &.

Thm (Kalisch & Bihimann, 07, Uhler, Raskutti, Bihlmann, &
Yu, 13): Under these assumptions, if n — oo, then

P(CPDAG # true CPDAG) — 0.

CPDAG (Completed partial DAG): an equivalent class of DAG.



PC algorithm, continued

> R-implementation

» Function pc() in R-package: pcalg:
https://cran.r-project.org/web/packages/pcalg/index.html
https://cran.r-project.org/web/packages/pcalg/pcalg.pdf

» R-function pdag2dag: Extend a Partially Directed Acyclic
Graph (PDAG) to a DAG:
https://www.rdocumentation.org/packages/pcalg/versions/2.7-
4/topics/pdag2dag

> Reference: Dor and Tarsi (1992). (May not be always
possible. Check to see if extendable)


https://cran.r-project.org/web/packages/pcalg/index.html
https://cran.r-project.org/web/packages/pcalg/pcalg.pdf
https://www.rdocumentation.org/packages/pcalg/versions/2.7-4/topics/pdag2dag
https://www.rdocumentation.org/packages/pcalg/versions/2.7-4/topics/pdag2dag

Maximum likelihood

» Global approach: constrained maximum
likelihood to estimate all directions
simultaneously.

> Complexity: super-exponentially many candidate DAGs (NP)

(exp(cp log p)).
> Acyclicity: DAG requirement: Need constraints to solve.
Without constraints: Not causal relations.

> Large problem: Achieved reconstruction
consistency for DAG’s structure as n,p — +oo,
when identifiable.



Constrained maximum likelihood

> Linear causal relations: Parameter: (U = (Uj), 02)

Yi= > UYe+g. g NO.0%); j=1.....p.
k%)

» Constrained maximum likelihood (Yuan, Shen, Pan & Wang,

19): I(U, o) — I(U) by separating U from o. Given a n x p
data matrix Y,

. 2
miny I(U) = 3 32, 57, (Vi — Zksj i Ui
subj to Y. (U # 0) < , (sparsity),

U Acyclicity (5) ,

k > 0: an integer-valued tuning parameter.

> Alternative: Zheng, Dan, Aragam, Ravikumar and Xing
(2020).



Acyclicity

> Yuan, Shen, Pan, & Wang (19): Difference convex
programming +constraint reduction (primal/dual)—global
method.
> Acyclicity:

D MU, #0)<SL-1;L =2, ,p. ©)

Ji=jLy1:1sksL
> Guarantee DAG. Conjecture: DC — global minimizer with prob
— lasn,p— oo,

> R-implementation of constrained MLE: R-package: clrdag
https://cran.r-project.org/web/packages/clrdag/index.html


https://cran.r-project.org/web/packages/clrdag/index.html

Cell signaling example

pakisd73 |=———— pasaz
a4 A 4

> 11 proteins
> 20 edges

» Data: 679
measurements




Analysis of cell signaling data
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Interventional models
> Add q intervention variables {X1, Xz, ..., X5} into (2).

q

Y= UkYe+ » WiXi+e. &~N0.02); j=1....p.
k#j I=1

(4)

> Unknown interventions: Unknown location and strength Wj;.
> Before intervention:

®@ ® & ®© © ©® 6 e

® ® ® ®

CPDAG @ (b) ©



Effect of intervention

» After intervention:
(-]
@ ® @

» can identify (a) from other two if ...
» Cause — outcome: Yz = aY> +8Y; +yX + Z.
» What kind of interventions should work?



Instrument and non-instrument interventions

> Intervention: X; — Y;if W) # 0in (7). (Y; -» X, by prior
knowledge but not from model).

> Instrument: if it satisfies that
> (A) Relevance: intervenes on at least one primary variable.
> (B) Exclusion: does not intervene with more than one primary

variables.
> Non-instrument: not (A) (invalid intervention) or not (B):
(multiple: X — Yj, X — Y, ...



Assumptions for model identifiability
» Thm (Li, Shen, Pan, 20) Model (7) is identifiable if
> (1A) (Non-degeneracy) EXX" is positive definite,
X=X, , Xg)T.
when X; — Y; (Y; = Y)) or, X intervenes on an imhédiate
parent of Y;.
> (1C) (Instrument adequacy) Each primary variable is
intervened by at least one instrument.
> No distributional assumption on intervention X (discrete or
continuous).
> If either of (1A)-(1C) breaks down, the model is not
identifiable.
> Key idea: a peeling algorithm.
> |dentifying all ancestors including parents.
> Given identifying ancestors, determine parents.
> Can draw inference.
> An application: Zilinskas R, Li C, Shen X, Pan W, Yang T.
(2024). Inferring a directed acyclic graph of phenotypes from
GWAS summary statistics. Biometrics.



Peeling algorithm

> In (7), rewrite V= W(I-U)"as VT:
Y=V X+ey, ev=>1U-U")Te~N0OQT", (5

> Vi, € RP & V,; € R9: |-th row & j-th column vectors of V.
> Prop: (Causal discovery via V) Under Assumptions 1(A)-1(C),

(A) Vj # 0 means X, intervenes on Y; or an ancestor of Yj;
(B) Y; — leaf node (no children) iff there exists an instrument X;
suchthat Vy #0 & [|Villo =1;1=1,...,q.

(C) If Vj # 0 & X is an instrument of Yk, then Y is ancestor of V).

> Insight:
> V=30 Wik((Dig + (U)g +---+ (UP k).
—— —— N —
par gra—par anc
> V) # 0 if there exist k, r such that Wi # 0 and (U"),; # 0.



Estimation of V

> Forj=1,---,p,
n q
— _ »
oj = - X (v, ) < Kj;
V. argn‘}lp (2n) ;(YU V).X)" st ; i #0) < K;
(6)
> 1 < K; < g — tuning parameter controlling sparsity & chosen
by CV.
> Variable selection (TLP, DC programming)



Peeling algorithm for identifying all ancestral relationships
(1) (Initialization) V[l = V. Begin iteraton h =0, - - - :
(2) (Leaf-lV pairs)
(a) Identify rows of V with smallest £,-norm. Restore the indices in
Al = {1+ I = arg min|[V[lo} for all IVs associated with leaf
variables.
(b) Identify largest absolute element index of the rows for each

I* e Alfl: B,Eh] = {j* | j* = arg max 'V,[f;]‘} forany I* € Al"l to
identify all leaf-IV X;. — Y}. pairs.
(3) (Ancestral relationships) Identify ancestral relationships
Y~ Yy if Viex # 0 for all I* € Al such that X — Y- & Y
has been already removed for k € BI-11.

et 3 i lh+1] — {1
(4) (Peeling-off) Remove leaf-1V pairs. Let V = V\(Aw’Bw),

h . .
where v[(]Aw o) is a submatrix by removing rows & columns

indexed by A"l and B! from V1M,
> [5] (Termination) h — h + 1 & repeat Steps 2-4 until
removing all Yjs.



Identifying Pa(j) from An(j)

> Structure eq: Yj = Ykepa(j) Yk + Zieint() WiXi + &j;
> Constrained regression:

ZkeAn Uik Yk + Ziemt(an(i)) WirXi + &;.
> Forj =1,---,p,

(U, Wy) = arg ming, w,(20) ™" 214 (Yj = Zenn() Ui Yie = Ziemiangy) Wi
st XUkl #0) + (Wl #0) < K

> An(j) = {k : Uy #0}.



Extension: Interventional models with confounders

>

| 4

vV vYyys.y

Chen L, Li C, Shen X, Pan W (2023). Discovery and Inference
of a Causal Network with Hidden Confounding. JASA.

Add q intervention variables {X1, Xz, ..., X5} into (2).

q
Y = Z Ui Yk+Z Wi Xi+hj+e;, &~ N(O,O'jz)€ j=1,....p.

k#j =1

(7)
hi,---,hp ~ N(0,X) : unmeasured confounders.
Unmeasured confounders: h;; j=1,...,p.

Unknown interventions: Unknown location and strength Wj;.
Model is not identifiable without IVs. Use IV to treat
confounding effects.

Alternative: Li C, Shen X, Pan W. (2023). Nonlinear causal
discovery with confounders. JASA. As in (7),

Y= (Ypa) + 1y +
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