Graphical models

Wei Pan (\& Xiaotong Shen)

Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN 55455

Email: panxx014@bumn.edu

PubH 8475/Stat 8056

Outline

- Reconstruction of an undirected graph: Gaussian graphical model (GGM)
- Inference for an undirected graph
- Reconstruction of multiple (related) undirected graphs
- Reconstruction of a directed acyclic graph (DAG):
- Observational data;
- Intervention data.

Terminology

- Graph $\mathcal{G}=(V, E)$:
- A set of nodes $V=\left\{v_{1}, \ldots, v_{p}\right\}$.
- A set of edges or links between nodes $E=\left\{e_{1}, \ldots, e_{m}\right\}$.
- Undirected: The edges have no direction, and the edge $\{i, j\}$ is the same as the edge $\{j, i\}$, i.e. each edge is an unordered pair of nodes.
- Directed: The edges have direction, and the edge (i, j) is not the same as the edge (j, i), i.e. each edge is an ordered pair of nodes.

Adjacency matrix

- Graph $\mathcal{G}=(V, E) \rightarrow p \times p$ adjacency matrix
$\boldsymbol{U}=\left\{U_{i j}: 1 \leq i, j \leq p\right\}$, where

$$
U_{i j}= \begin{cases}\neq 0 & \text { if }(i, j) \in E \\ 0 & \text { if }(i, j) \notin E\end{cases}
$$

- Undirected:
- \boldsymbol{U} is symmetric, i.e., $U_{i j}=U_{j i}$.
- U $=\left\{U_{i j}\right\}, U_{i j}$ denotes"similarity" between $i \& j$.
- Directed:
- U: symmetric or asymmetric.
- U: directed acyclic graph (no directed cycles) \rightarrow acyclicity.
- $\boldsymbol{U}^{k}=0$: maximum length of directed pathway $\leq k-1$. Q: what is the meaning of $\left(U^{k}\right)_{i j}$?

$$
\left(U^{2}\right)_{i j}=\sum_{m=1}^{p} U_{i m} U_{m j}
$$

Reconstruction of an undirected graph

A graphical model for undirected graphs

- Pairwise relations
- set of p variables $\Leftrightarrow \boldsymbol{Y}=\left(\boldsymbol{Y}_{1}, \cdots, \boldsymbol{Y}_{p}\right)$.
- interactions \Leftrightarrow conditional dependencies.
- graph:

$$
\begin{aligned}
& \mathcal{G}=(V, E), \quad V=\{1, \cdots, p\} \\
& (j, k) \in E \quad \text { if } \quad \boldsymbol{Y}_{j} \not \Perp \boldsymbol{Y}_{k} \mid \boldsymbol{Y}_{\backslash\{j, k\}}
\end{aligned}
$$

- example:

$-\boldsymbol{y}_{1} \xrightarrow{\wedge} \boldsymbol{y}_{3} \mid \boldsymbol{y}_{2}, \boldsymbol{y}_{4}, \boldsymbol{y}_{5}$
$-\boldsymbol{y}_{1} \Perp \boldsymbol{y}_{5} \mid \boldsymbol{y}_{2}, \boldsymbol{y}_{3}, \boldsymbol{y}_{4}$
- Goal: reconstruct \mathcal{G} based on n i.i.d.
- Remark: in some applications, \Perp may mean (conditional or marginal) uncorrelatedness.
An example: co-expression networks.

Gaussian graphical model for undirected graphs

- Model: $\boldsymbol{Y} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma})$.
- Precision matrix: $\boldsymbol{\Omega}=\left(\omega_{j k}\right)_{p \times p}=\boldsymbol{\Sigma}^{-1}$
- Conditional independence:

$$
\boldsymbol{Y}_{j} \Perp \boldsymbol{Y}_{k} \mid \boldsymbol{Y}_{\{j, k\}} \Leftrightarrow \omega_{j k}=0
$$

- Graph connectivity \Longleftrightarrow zero offdiagonals of $\boldsymbol{\Omega}$. Estimation of zeros of Ω : covariance selection (Dempster, 1972).

Conditional independence

- $\boldsymbol{Y}=\left(Y_{1}, \cdots, Y_{p}\right)^{T} \sim N(0, \boldsymbol{\Sigma})$ with $\boldsymbol{\Sigma}=\boldsymbol{\Omega}^{-1}$.
- Density of $\boldsymbol{Y}: f(\boldsymbol{y})=\frac{1}{\sqrt{(2 \pi)^{p} \operatorname{det}(\boldsymbol{\Sigma})}} \exp \left(-\frac{1}{2} \boldsymbol{y}^{\boldsymbol{T}} \boldsymbol{\Omega} \boldsymbol{y}\right)$.
- Let $Z=\left(Y_{3}, \cdots, Y_{p}\right)$ and $X=\left(Y_{1}, Y_{2}\right)$.

$$
\begin{aligned}
& X \mid Z \sim N(\underbrace{\mu_{X}+\left(Z-\mu_{Z}\right)^{T} \Sigma_{Z Z}^{-1} \Sigma_{Z X}}_{\mu_{X \mid Z}=0}, \underbrace{\Sigma_{X X}-\Sigma_{Z X}^{T} \Sigma_{Z Z}^{-1} \Sigma_{Z X}}_{\Omega_{X X}}) . \\
& \boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{x x} & \boldsymbol{\Sigma}_{x z} \\
\boldsymbol{\Sigma}_{z x} & \Sigma_{z z}
\end{array}\right), \quad \boldsymbol{\Omega}=\left(\begin{array}{ll}
\boldsymbol{\Omega}_{x x} & \boldsymbol{\Omega}_{x z} \\
\boldsymbol{\Omega}_{z x} & \Omega_{z z}
\end{array}\right) .
\end{aligned}
$$

- Inverse: $\Omega_{x x}=\left(\omega_{i j}\right)_{2 \times 2}, \omega_{12} \rightarrow(1,2)$-entry of $\Omega_{x x}$.
- Conditional density of \boldsymbol{X} given \boldsymbol{Z} is

$$
\begin{gathered}
f(\boldsymbol{x} \mid \boldsymbol{z})=\frac{\left(\omega_{11} \omega_{22}-\omega_{12}^{2}\right)^{1 / 2}}{2 \pi} \exp \left(-\frac{1}{2}\left(\omega_{11} y_{1}^{2}+\omega_{22} y_{2}^{2}+2 \omega_{12} y_{1} y_{2}\right)\right) \\
=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho_{12}^{2}}} \exp \left(-\frac{1}{\left.2\left(1-\rho_{12}\right)^{2}\right)}\left(y_{1}^{2} / \sigma_{1}^{2}+y_{2}^{2} / \sigma_{2}^{2}-2 \rho_{12} y_{1} y_{2} / \sigma_{1} \sigma_{2}\right)\right.
\end{gathered}
$$

- Note: $-\omega_{12} \sigma_{1} \sigma_{2}=\frac{\rho_{12}}{\left(1-\rho_{12}^{2}\right)}, \omega_{j j} \sigma_{j}^{2}=\frac{1}{\left(1-\rho_{12}^{2}\right)}, \rho_{12}, \sigma_{j} \rightarrow$ corr, var given Z.
- Conditional independence of Y_{1}, Y_{2} given rest, iff $\omega_{12}=0$.

Conditional independence and partial correlation $\rho_{j j^{\prime}}$

- Express Y_{j} :

$$
\begin{gathered}
Y_{j}=\sum_{j^{\prime} \neq j} \beta_{j j^{\prime}} Y_{j^{\prime}}+\epsilon_{j}, \\
\beta_{j j^{\prime}}=-\omega_{j j^{\prime}} / \omega_{j j}=\rho_{j j^{\prime}} \sqrt{\frac{\omega_{j^{\prime} j^{\prime}}}{\omega_{j j}}} .
\end{gathered}
$$

Neighborhood Selection (Meinshausen \& Buhlmann, 06)

- A "local" approach: simpler; less efficient.
- Fit p individual lasso regressions

$$
\min _{\beta_{j^{\prime}}}\left\|\boldsymbol{Y}_{j}-\sum_{j^{\prime} \neq j} \beta_{j j^{\prime}} \boldsymbol{Y}_{j^{\prime}}\right\|^{2}+\lambda \sum_{j^{\prime} \neq j}\left|\beta_{j j^{\prime}}\right|, j=1, \ldots, p
$$

- Calculate $\hat{\rho}_{j j^{\prime}}=\boldsymbol{\operatorname { s i g n }}\left(\hat{\beta}_{j j^{\prime}}\right) \sqrt{\hat{\beta}_{j j^{\prime}} \hat{\beta}_{j^{\prime} j}}$.

Maximum likelihood

- A "global" approach.
- Regularization is necessary when $p>n$, Yuan \& Lin (07).
- Single Gaussian graphical model: (S: Sample covariance)

$$
(\operatorname{Tr}(\boldsymbol{\Omega} \boldsymbol{S})-\log \operatorname{det}(\boldsymbol{\Omega}))+\lambda \sum_{1 \leq j<k \leq p}\left|\omega_{j k}\right|
$$

- Regularization for off-diagonals. Why?
- Estimation of $\boldsymbol{\Omega}$ and $\boldsymbol{\Sigma}$ differ dramatically in a high-d situation.

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccc}
4 / 3 & 2 / 3 & 1 / 3 & 1 / 6 \\
2 / 3 & 4 / 3 & 2 / 3 & 2 / 3 \\
1 / 3 & 2 / 3 & 4 / 3 & 2 / 3 \\
1 / 6 & 1 / 3 & 2 / 3 & 4 / 3
\end{array}\right), \boldsymbol{\Sigma}^{-1}=\left(\begin{array}{cccc}
1 & -1 / 2 & 0 & 0 \\
-1 / 2 & 5 / 4 & -1 / 2 & 0 \\
0 & -1 / 2 & 5 / 4 & -1 / 2 \\
0 & 0 & -1 / 2 & 1
\end{array}\right)
$$

- Yuan \& Lin (07) uses an interior point method.
- Fast algorithms are developed by Friedman et al. (GLasso, 08), and Hsieh et al.(QUIC, 2013), ...

Graphical Lasso (GLasso)

- Gaussian graphical model:
- Regularized negative log-likelihood function for $\boldsymbol{\Omega}=\boldsymbol{\Sigma}^{-1}$ is proportional to

$$
\begin{equation*}
(\operatorname{Tr}(\boldsymbol{\Omega S})-\log \operatorname{det}(\boldsymbol{\Omega}))+\lambda \sum_{1 \leq j \leq k \leq p}\left|\omega_{j k}\right| \tag{1}
\end{equation*}
$$

- Note: $\sum_{1 \leq j \leq k \leq p}\left|\omega_{j k}\right|=\|\Omega\|_{1}$ - the L_{1}-norm.
- When p is large or close to sample size, the sample covariance \boldsymbol{S} is not a stable estimate:
- Ref: Friedman, Hastie and Tibshirani (07).

Numerical examples, GLasso

```
install.packages("glasso")
library(glasso)
set.seed(100)
    s=c(10,1,5,4,10,2,6,10,3,10)
    S=matrix(0,nrow=4,ncol=4)
    S[row(S)>=col(S)]=s
    S=(S+t(S))
    diag(S)<-10
% zero<-matrix(c(1,3,2,4),ncol=2,byrow=TRUE)
% a<-glasso(S,rho=0.01,zero=zero)
    a<-glasso(S,rho=1)
    a
```


L_{0}-regularization (Shen, Pan \& Zhu, 12)

- Likelihood:

$$
(\operatorname{Tr}(\boldsymbol{\Omega S})-\log \operatorname{det}(\boldsymbol{\Omega}))+\lambda \sum_{1 \leq j<k \leq p} I\left(\omega_{j k} \neq 0\right)
$$

- Idea: Same as before. Replace $I\left(\omega_{j k} \neq 0\right)$ by truncated L_{1}-function $(T L P) J_{\tau}(x)=\min \left(\frac{|x|}{\tau}, 1\right)$.
- Computation: DC programming+any convex method.
- R package MGGM: Structural Pursuit Over Multiple Undirected Graphs https://rdrr.io/cran/MGGM/

Inference for undirected graphs

Inference for Graphical Models

- Hypothesis test: $H_{0}: \boldsymbol{\Omega}_{B}=\mathbf{0}$ vs $H_{a}: \boldsymbol{\Omega}_{B} \neq \mathbf{0}, B=\{(i, j)\}$ is an index set to be specified.
- Example:
- If $B=\{(1,2)\}$, then $\Omega_{B}=\omega_{12}$, or

$$
H_{0}: \omega_{12}=0, \quad \text { vs } \quad H_{a}: \omega_{12} \neq 0 .
$$

- If $B=\{(1,2),(1,3), . .(1, p)\}$, then $\Omega_{B}=\left(\omega_{12}, \omega_{13}, \cdots, \omega_{1 p}\right)^{T}$, or

$$
H_{0}: \omega_{12}=\cdots=\omega_{1 p}=0, \text { vs } H_{a}: \text { not. }
$$

- Issues:
- How to make a high-dimensional inference, when $p,|B| \rightarrow \infty$?
- How to treat overparametrized models, when \# par > n ?
- Can we use tests in a low-dimensional situation? Any modifications are needed?

Literature

- Inference for GGM. Jankova \& van de Geer (2016)
- Debiased Lasso approach (Zhang \& Zhang, 14): Bias correction for low-d parameters.
- Debiased GLasso
- GLasso: $\hat{\boldsymbol{\Omega}}=\arg \min _{\boldsymbol{\Omega}}(\operatorname{Tr}(\boldsymbol{\Omega S})-\log \operatorname{det}(\boldsymbol{\Omega}))+\lambda \sum_{1 \leq j \leq k \leq p}\left|\omega_{j k}\right|$
- $\hat{\boldsymbol{T}}=\hat{\Omega}+\underbrace{(\hat{\boldsymbol{\Omega}}-\hat{\boldsymbol{\Omega}} \hat{\boldsymbol{\Sigma}} \hat{\boldsymbol{\Omega}})}_{\text {bias corr }}, \hat{\boldsymbol{\Sigma}}=\hat{\boldsymbol{\Omega}}^{-1}$.
- Asym: $\sqrt{n}\left(\hat{T}_{i j}-\Omega_{i j}\right) / \sigma_{i j} \rightarrow N(0,1)$ when $\lambda \approx \sqrt{\log p / n}$, where $\sigma_{i j}^{2}=\operatorname{Var}\left(\hat{T}_{i j}\right)$.
- Issues: How to utilize dependence of multi-components?

Constrained likelihood ratio (Zhu, Shen, \& Pan, 20)

- Regularizing only nuisance parameters.
- Higher test efficiency for testing multiple parameters.
- Reducing potential bias due to regularization.
- Test:

$$
H_{0}: \omega_{i j}=0,(i, j) \in B \quad\left(\Omega_{B}=0\right) \quad \text { vs } \quad H_{a}: \exists(i, j) \in B, \omega_{i j} \neq 0
$$

Constrained MLEs $\widehat{\Omega}^{(0)}\left(H_{0}\right) \& \widehat{\boldsymbol{\Omega}}^{(1)}\left(H_{a}\right)$:

$$
\begin{aligned}
\widehat{\boldsymbol{\Omega}}^{(0)} & =\operatorname{argmin}_{\sum_{(i, j) \notin B} J_{T}\left(\left|\omega_{i j}\right|\right) \leq K, \Omega_{B}=0} \operatorname{Tr}(\mathbf{S} \boldsymbol{\Omega})-\log \operatorname{det}(\boldsymbol{\Omega}), \\
\widehat{\boldsymbol{\Omega}}^{(1)} & =\operatorname{argmin}_{\sum_{(i, j) \in B} J_{T}\left(\left|\omega_{i j}\right|\right) \leq K} \operatorname{Tr}(\mathbf{S} \boldsymbol{\Omega})-\log \operatorname{det}(\boldsymbol{\Omega}),
\end{aligned}
$$

- $J_{T}(z)=\min \left(\frac{|z|}{\tau}, 1\right)$, TLP (Truncated L_{1}-penalty).
- Estimate (K, τ) by a cross-validation (CV) criterion based on the full model.

Null distributions

- Under regularity conditions on $p, n,|B|$, and Ω^{0},
- Asymptotic normality: If $|B|$ is fixed,

$$
\sqrt{n}\left(\widehat{\Omega}_{B}^{(1)}-\Omega_{B}^{0}\right) \xrightarrow{d} N(0, \underbrace{\Gamma_{B}}_{\text {Fisher info }}),
$$

- Wilk's Theorem: If $\omega_{i j}=0$ for $(i, j) \in B$ \& $|B|$ is fixed, then

$$
2\left[L_{n}\left(\widehat{\Omega}^{(1)}\right)-L_{n}\left(\widehat{\Omega}^{(0)}\right)\right] \xrightarrow{d} \chi_{|B|}^{2} .
$$

- Generalized Wilk's Theorem: If $\omega_{i j}=0$ for $(i, j) \in B \&|B| \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
(2|B|)^{-1 / 2}\left[2\left[L_{n}\left(\widehat{\Omega}^{(1)}\right)-L_{n}\left(\widehat{\Omega}^{(0)}\right)\right]-|B|\right] \xrightarrow{d} N(0,1) .
$$

Comments

- LR tests (can handle varying dimensions) are more preferable in terms of the power compared to the debias-test. The asymptotic distribution can be the χ^{2} or normal depending on the degrees of freedom.
- (Generalized) Wilk's Theorem is generalized to a high-d situation provided that nuisance parameters have sparse structures.

Reconstruction of multiple undirected graphs

Example: Multiple networks of 4 subtypes of cancers

- 11,861 genes
- 200 patients
- 4 subtypes
- multiple networks
- similar overall structure

Multiple Gaussian graphical models

- Motivation: Data contains sub-populations
- Model: independent

$$
\boldsymbol{Y}_{n_{1}}^{(l)}, \cdots, \boldsymbol{Y}_{n_{l}}^{(I)} \sim N\left(\mathbf{0}, \boldsymbol{\Sigma}_{l}\right), I=1, \cdots, L
$$

- Graphs:

$$
\mathcal{G}_{1}, \cdots, \mathcal{G} L
$$

- Parameters of interest:

$$
\boldsymbol{\Omega}_{l}=\boldsymbol{\Sigma}_{l}^{-1}
$$

- Assumptions: $\Omega_{1}, \cdots, \Omega_{L}$ are similar.
- Goal: Encourage similarity among Ω 's.

Multiple Gaussian graphical models

- Model: $\boldsymbol{Y}_{1}^{(I)}, \cdots, \boldsymbol{Y}_{n_{l}}^{(1)} \sim N\left(0, \Omega_{l}^{-1}\right), I=1, \cdots, L$
- Joint log-likelihood:

$$
\sum_{l=1}^{L} \frac{n_{l}}{2}\left(-\operatorname{Tr}\left(\Omega_{l} \mathbf{S}_{l}\right)+\log \operatorname{det}\left(\Omega_{l}\right)\right)
$$

- Penalty for Sparsity:

$$
\lambda_{1} \sum_{1 \leq i<k \leq p} \sum_{l=1}^{L} J_{\tau}\left(\left|\omega_{j k}\right|\right)
$$

- Penalty for grouping:

$$
\lambda_{2} \sum_{1 \leq j i k \leqslant p} \sum_{p \sim \sim^{\prime}} J_{\tau}\left(\left|\omega_{j k \mid}-\omega_{j k l^{\prime} \mid}\right|\right)
$$

- Grouping over graph $\mathcal{G}^{*}=\left(V^{*}, E^{*}\right)$:
- $V^{*}=\{1, \cdots, L\}, I \sim l^{\prime} \Leftrightarrow\left(I, I^{\prime}\right) \in E^{*}$

$$
\begin{aligned}
& E^{*}=\left\{\left(I, I^{\prime}\right)| | I-I^{\prime} \mid \leq 1\right\}-\text { serial (fused) graph } \\
& E^{*}=\left\{\left(I, I^{\prime}\right) \mid 1 \leq I<I^{\prime} \leq L\right\} \text { - complete graph }
\end{aligned}
$$

L_{0}-regularization-Truncated ℓ_{1} penalty ${ }^{1}$

- Non-convex penalty: truncated ℓ_{1} penalty (TLP)

$$
J_{\tau}(x)=\min \left(\frac{|x|}{\tau}, 1\right), \tau>0
$$

- Relation to ℓ_{0} :

$$
\lim _{\tau \rightarrow 0} J_{\tau}(x)=\mathbb{I}(x \neq 0)
$$

- Advantages over ℓ_{1} :
- better model selection
- nearly unbiased

[^0]
Multiple Gaussian graphical models

- Penalized maximum likelihood:

$$
\left.\min .\left(\sum_{l=1}^{L} \frac{n_{l}}{2} \operatorname{Tr}\left(\boldsymbol{\Omega}_{l} \mathbf{S}_{l}\right)-\log \operatorname{det}\left(\boldsymbol{\Omega}_{l}\right)\right)+\sum_{1 \leq j<k \leq p} p_{j k}\left(\omega_{j k 1}, \cdots, \omega_{j k L}\right)\right)
$$

- Zhu, Shen \& Pan (2014):
- TLP + nonconvex grouping:

$$
p_{j k}\left(\omega_{j k 1}, \cdots, \omega_{j k L}\right)=\lambda_{1} \sum_{l=1}^{L} J_{\tau}\left(\left|\omega_{j k}\right|\right)+\lambda_{2} \sum_{l \sim \sim^{\prime}}^{L} J_{\tau}\left(\left|\omega_{j k \mid}-\omega_{\left.j k\right|^{\prime}}\right|\right)
$$

- (Convex) Lasso version:

$$
p_{j k}\left(\omega_{j k 1}, \cdots, \omega_{j k L}\right)=\lambda_{1} \sum_{l=1}^{L}\left|\omega_{j k \mid}\right|+\lambda_{2} \sum_{\mid \sim^{\prime}}^{L}\left|\omega_{j k \mid}-\omega_{j k k^{\prime}}\right|
$$

Causal discovery: DAG reconstruction

Directed acyclic graphical (DAG) model

- A DAG is a directed graph without directed cycles.
- Nodes correspond to primary variables $\left(Y_{1}, \cdots, Y_{p}\right)$.
- Directed edges represent causal (parent-child) relations, $Y_{i} \rightarrow Y_{j}$.

Adjacency matrix:

$$
\left(\begin{array}{llllll}
& A & B & C & D & E \\
A & 0 & 0 & 0 & 0 & 0 \\
B & 0 & 0 & 0 & 0 & 0 \\
C & * & 0 & 0 & 0 & 0 \\
D & 0 & * & 0 & 0 & 0 \\
E & 0 & 0 & * & * & 0
\end{array}\right)
$$

- Local Markov Property specifies a DAG: given its parents, a node is conditionally independent of its non-descendants.

$$
Y_{j}=f_{j}\left(Y_{\mathrm{pa}(j)}, \varepsilon_{j}\right), \quad j=1, \ldots, p,
$$

pa(j): parent variables of $Y_{j} ; \varepsilon_{j}$: error.

Terminology

- Parent-child relation: Y_{i} is a parent of $Y_{j}: Y_{i} \rightarrow Y_{j}$.
- Leaf: no children (terminal node). Root: No parent.
- Ancestral relation: Y_{i} is an ancestor of Y_{j} if a v-directed pathway $Y_{i}=Y_{k_{0}} \rightarrow Y_{k_{1}} \rightarrow \ldots \rightarrow Y_{k_{v}}=Y_{j} ; v \geq 1: Y_{i} \leadsto Y_{j}$.
- Immediate parent-child relation: $v<2, Y_{i} \Rightarrow Y_{j}$. Special case of ancestral relation.
- Ex: $Y_{1} \leadsto Y_{j}, Y_{1} \Rightarrow Y_{2} \Rightarrow Y_{3} \Rightarrow Y_{4}$.

Why DAG models?

- Causal relations modeling:
- Tools for mediation analysis: Exposure \rightarrow Mediators \rightarrow Outcome.
- Applications:
- Brain network analysis: Effective connectivity of ROI's-casual influences between neurons to explain regional effects in terms of interregional connectivity.
- Gene regulatory networks: Regulatory relations between genes.
- Insurance, Marketing, Decision support systems, ...
- Bayesian or causal networks.

Brain network analysis example

- Functional connectivity
- 30 regions of interest

Cell signaling example

- 11 proteins
- 20 edges

Gaussian models

- Structural equations:

$$
\begin{equation*}
Y_{j}=\sum_{k \neq j} U_{j k} Y_{k}+\varepsilon_{j}, \quad \varepsilon_{j} \stackrel{i n d}{\sim} N\left(0, \sigma_{j}^{2}\right) ; \quad j=1, \ldots, p, \tag{2}
\end{equation*}
$$

- Parameter: $\boldsymbol{U}=\left(U_{i j}\right)$ is a real-valued adjacency matrix.
- Causal discovery (Structure learning): Reconstruction of a DAG from data
- Estimation of \boldsymbol{U} \& casual order of Y_{1}, \cdots, Y_{p} simultaneously-challenging, could be high-dimensional ($p>n$).
- Can this be done? To what extent? Identifiability.

Identifiability

- Equal variances: If $\sigma_{1}=\cdots=\sigma_{p}=\sigma, \boldsymbol{U}$ is identifiable (Peters \& Bühlmann, 13).
- Example: given $Y_{1} \sim Y_{2}$, what is the causal direction?
- I. Hidden confounding: $Y_{1} \Longleftarrow Z \Longrightarrow Y_{2}$.
- II. No hidden confounding (in the current context):
i) If $Y_{1} \Longleftarrow Y_{2}$, then

$$
\begin{aligned}
& Y_{1}=Y_{2} \beta_{21}+\epsilon_{1} \text { and } Y 2=\epsilon_{2}, \\
& \operatorname{var}\left(Y_{1}\right)=\operatorname{var}\left(Y_{2} \beta_{21}\right)+\operatorname{var}\left(\epsilon_{1}\right)>\operatorname{var}\left(\epsilon_{1}\right)=\operatorname{var}\left(\epsilon_{2}\right)=\operatorname{var}\left(Y_{2}\right) .
\end{aligned}
$$

ii) If $Y_{1} \Longrightarrow Y_{2}$, then ...

- Remarks: it will be easier if i) ϵ 's are not normal, or ii) relationships are non-linear.
ii): Additive noise model (ANM),

If in truth $Y_{1}=f\left(Y_{2}\right)+\epsilon_{1}$ with ϵ_{1} indep of Y_{2}, then cannot write $Y_{2}=g\left(Y_{1}\right)+\epsilon_{2}$ with ϵ_{2} indep of Y_{1}. Example: If $Y_{1}=Y_{2}^{2}+\epsilon_{1}$, then $Y_{2}=\sqrt{Y_{1}-\epsilon_{1}}=\ldots$ In practice, fit a nonparametric reg model, then test the independence b / w the residuals and the predictor (Jiao et al 18).

Existing methods for observational models

- Search-and-score: Use a model selection criterion to enumerate directions stepwisely. Hill Climbing (HC, Korb \& Nicholson, 03), Entropy (De Campos,07).
Comments: Super-exponential candidate DAGs: $O\left(p^{p}\right)$, lack of theory.
- Test-based: Sequential independence tests through edge deletion.
PC (Spirtes \& Glymour, 00).
Comments: Super-exponential tests in the worst case: $O\left(p^{p}\right)$, Strong faithfulness assumption: restrictive (Uhler et al., 13).
- L_{1}-regularization: Identify links and choose possible directions.
Fu \& Zhou (JASA, 13), Huang, et. al (IEEE, 13).
- Challenges:

Computation: Infeasible. Super-exponential DAGs (roughly $p!2^{p^{2}}, p$ is \# node). Statistical accuracy: Low due to a huge number of enumerations.

PC algorithm for DAG skeleton

- Principle:
- If no edge exist between $X_{1} \& X_{2}$ (no local Markov property), in either direction, then X_{1} is neither X_{2} 's parent nor its child. But any variable is independent of its non-descendants given its parents. Thus $X_{1} \perp X_{2} \mid S$ for some set of variables S.
- Suppose the converse is true: if $X_{1} \perp X_{2} \mid S$, then there cannot be an edge between X_{1} and X_{2}. So there is an edge between X_{1} and X_{2} iff we cannot make dependence between them to go away, no mater what we condition on.

PC algorithm for DAG skeleton

- Start with a complete undirected graph (with an edge b/w any two nodes).
- For each pair X_{1} and X_{2}, see if $X_{1} \perp X_{2}$. If so, remove the edge between X_{1} and X_{2}.
- For each X_{1} and X_{2} that are still connected, and each third variable Z; see if $X_{1} \perp X_{2} \mid Z$. If so, remove the edge between X_{1} and X_{2}.
- For each X_{1} and X_{2} that are still connected, and each third or fourth variables Z_{1} and Z_{2}, see if $X_{1} \perp X_{2} \mid Z_{1}, Z_{2}$. If so, remove their edge.
- For each X_{1} and X_{2} that are still connected, see if $X_{1} \perp X_{2}$ given the $p-2$ other variables. If so, remove their edge.

PC algorithm

- Skeleton of a DAG: an undirected graph ignoring directions of arrows.
- Identifying the skeleton:
- From complete graph $G, I=-1$,
- $I=I+1$,
- repeat
- select (new) ordered pair of adjacent nodes $X_{1}, X_{2} \in G$.
- select (new) neighborhood N of X_{1} with size I (if possible)
- if X_{1}, X_{2} are conditional independence given N, save $N \in M$; delete edge $X_{1}, X_{2} \in G$.
- until all ordered pairs have been tested; until all neighborhoods are of size smaller than l.
- Finding the DAG: The skeleton can be directed using some rules.
- Test $H_{0}: \rho_{X_{1}, X_{2} \mid N}=0$ vs H_{a}. Test stat: $Z=\frac{1}{2} \log \left(\frac{1+\hat{\rho} X_{1}, X_{2} \mid N}{1-\hat{\rho} x_{1}, X_{2} \mid N}\right)$, reject if $\sqrt{n-|N|-3}|Z|>\Phi^{-1}(1-\alpha / 2)$ for significance $\alpha, \hat{\rho}$: Sample partial correlation.
- Fisher's transformation: $Z \sim N(0,1 / \sqrt{n-|N|-3})$ under H_{0} assuming normality between X_{1}, X_{2} given N.

PC algorithm, Consistency

- (n, p) : Sample size, \# nodes,
- Distribution: $\left(X_{1}, \cdots, X_{p}\right) \sim N(\mathbf{0}, \boldsymbol{\Sigma})$.
- Nodes: $p=O\left(n^{a}\right)$ with $0 \leq a<\infty$,
- Max \# neighbors: $O\left(n^{1-b}\right)$ with $0<b<1$ (sparse),
- Strong faithfulness: $S \subset V \backslash\{i, j\}$,

$$
\min _{i, j}\left\{\left|\operatorname{Corr}\left(X_{i}, X_{j} \mid X_{S}\right)\right|: \operatorname{Corr}\left(X_{i}, X_{j} \mid X_{S}\right) \neq 0\right\} \geq \kappa ;
$$

where $\kappa=O\left(n^{-d}\right)$ (larger than $n^{-1 / 2}$), $0<d<\frac{b}{2}$.

- Thm (Kalisch \& Bühlmann, 07, Uhler, Raskutti, Bühlmann, \& Yu, 13): Under these assumptions, if $n \rightarrow \infty$, then

$$
P(C \widehat{P D A} G \neq \text { true CPDAG }) \rightarrow 0
$$

- CPDAG (Completed partial DAG): an equivalent class of DAG.

PC algorithm, continued

- R-implementation
- Function pc() in R-package: pcalg: https://cran.r-project.org/web/packages/pcalg/index.html https://cran.r-project.org/web/packages/pcalg/pcalg.pdf
- R-function pdag2dag: Extend a Partially Directed Acyclic Graph (PDAG) to a DAG: https://www.rdocumentation.org/packages/pcalg/versions/2.74/topics/pdag2dag
- Reference: Dor and Tarsi (1992). (May not be always possible. Check to see if extendable)

Maximum likelihood

- Global approach: constrained maximum likelihood to estimate all directions simultaneously.
- Complexity: super-exponentially many candidate DAGs (NP) $(\exp (c p \log p))$.
- Acyclicity: DAG requirement: Need constraints to solve. Without constraints: Not causal relations.
- Large problem: Achieved reconstruction consistency for DAG's structure as $n, p \rightarrow+\infty$, when identifiable.

Constrained maximum likelihood

- Linear causal relations: Parameter: $\left(\boldsymbol{U}=\left(U_{i j}\right), \sigma^{2}\right)$

$$
Y_{j}=\sum_{k \neq j} U_{j k} Y_{k}+\varepsilon_{j}, \quad \varepsilon_{j} \stackrel{\text { ind }}{\sim} N\left(0, \sigma^{2}\right) ; \quad j=1, \ldots, p,
$$

- Constrained maximum likelihood (Yuan, Shen, Pan \& Wang, 19): $I(\boldsymbol{U}, \sigma) \rightarrow I(\boldsymbol{U})$ by separating \boldsymbol{U} from σ^{2}. Given a $n \times p$ data matrix \boldsymbol{Y},

$$
\begin{gathered}
\min \boldsymbol{U} I(\boldsymbol{U})=\frac{1}{2} \sum_{j=1}^{p} \sum_{i=1}^{n}\left(y_{i j}-\sum_{k \neq j} y_{i k} U_{j k}\right)^{2} \\
\text { subj to } \sum_{j \neq k} I\left(U_{j k} \neq 0\right) \leq \kappa,(\text { sparsity }), \\
\boldsymbol{U} \text { Acyclicity }(5),
\end{gathered}
$$

$\kappa>0$: an integer-valued tuning parameter.

- Alternative: Zheng, Dan, Aragam, Ravikumar and Xing (2020).

Acyclicity

- Yuan, Shen, Pan, \& Wang (19): Difference convex programming +constraint reduction (primal/dual)-global method.
- Acyclicity:

$$
\begin{equation*}
\sum_{j_{1}=j_{L+1}: 1 \leq K \leq L} I\left(U_{j_{k j+1}} \neq 0\right) \leq L-1 ; L=2, \cdots, p . \tag{3}
\end{equation*}
$$

- Guarantee DAG. Conjecture: DC \rightarrow global minimizer with prob $\rightarrow 1$ as $n, p \rightarrow \infty$.
- R-implementation of constrained MLE: R-package: clrdag https://cran.r-project.org/web/packages/clrdag/index.html

Cell signaling example

- 11 proteins
- 20 edges
- Data: 679 measurements

Analysis of cell signaling data

Interventional models

- Add q intervention variables $\left\{X_{1}, X_{2}, \ldots, X_{q}\right\}$ into (2).

$$
\begin{equation*}
Y_{j}=\sum_{k \neq j} U_{j k} Y_{k}+\sum_{l=1}^{q} W_{j l} X_{l}+\varepsilon_{j}, \quad \varepsilon_{j} \sim N\left(0, \sigma_{j}^{2}\right) ; \quad j=1, \ldots, p \tag{4}
\end{equation*}
$$

- Unknown interventions: Unknown location and strength $W_{i j}$.
- Before intervention:

CPDAG

(a)

(b)

(c)

Effect of intervention

- After intervention:

- can identify (a) from other two if ...
- Cause \rightarrow outcome: $Y_{3}=\alpha Y_{2}+\beta Y_{1}+\gamma X+Z$.
- What kind of interventions should work?

Instrument and non-instrument interventions

- Intervention: $X_{I} \rightarrow Y_{j}$ if $W_{l j} \neq 0$ in (7). ($Y_{j} \rightarrow X_{l}$ by prior knowledge but not from model).
- Instrument: if it satisfies that
- (A) Relevance: intervenes on at least one primary variable.
- (B) Exclusion: does not intervene with more than one primary variables.
- Non-instrument: not (A) (invalid intervention) or not (B): (multiple: $X_{l} \rightarrow Y_{j}, X_{l} \rightarrow Y_{k}, \ldots$

Assumptions for model identifiability

- Thm (Li, Shen, Pan, 20) Model (7) is identifiable if
- (1A) (Non-degeneracy) $E X X^{\top}$ is positive definite, $\boldsymbol{X}=\left(X_{1}, \cdots, X_{q}\right)^{\top}$.
- (1B) (Intervention effectiveness) $\operatorname{Cov}\left(Y_{j}, X_{l} \mid \boldsymbol{X}_{\{1, \ldots, q\rangle \backslash\{I\}}\right) \neq 0$ when $X_{l} \rightarrow Y_{i}\left(Y_{i} \Rightarrow Y_{j}\right)$ or, X_{l} intervenes on an immediate parent of Y_{j}.
- (1C) (Instrument adequacy) Each primary variable is intervened by at least one instrument.
- No distributional assumption on intervention \boldsymbol{X} (discrete or continuous).
- If either of (1A)-(1C) breaks down, the model is not identifiable.
- Key idea: a peeling algorithm.
- Identifying all ancestors including parents.
- Given identifying ancestors, determine parents.
- Can draw inference.
- An application: Zilinskas R, Li C, Shen X, Pan W, Yang T. (2024). Inferring a directed acyclic graph of phenotypes from GWAS summary statistics. Biometrics.

Peeling algorithm

- $\ln (7)$, rewrite $\boldsymbol{V}=\boldsymbol{W}(\boldsymbol{I}-\boldsymbol{U})^{-1}$ as \boldsymbol{V}^{\top} :

$$
\begin{equation*}
\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}+\varepsilon_{V}, \quad \varepsilon_{V}=\left(\boldsymbol{I}-\boldsymbol{U}^{\top}\right)^{-1} \varepsilon \sim N\left(\mathbf{0}, \boldsymbol{\Omega}^{-1}\right) \tag{5}
\end{equation*}
$$

- $\boldsymbol{V}_{\mathbf{l} \bullet} \in \mathbb{R}^{p} \& \boldsymbol{V}_{\bullet j} \in \mathbb{R}^{q}: I$-th row $\& j$-th column vectors of \boldsymbol{V}.
- Prop: (Causal discovery via V) Under Assumptions 1(A)-1(C),
(A) $V_{l j} \neq 0$ means X_{l} intervenes on Y_{j} or an ancestor of Y_{j};
(B) $Y_{j} \rightarrow$ leaf node (no children) iff there exists an instrument X_{l} such that $V_{l j} \neq 0 \&\left\|V_{l \bullet}\right\|_{0}=1 ; I=1, \ldots, q$.
(C) If $V_{l j} \neq 0 \& X_{l}$ is an instrument of Y_{k}, then Y_{k} is ancestor of Y_{l}.
- Insight:
- $V_{l j}=\sum_{k=1}^{p} W_{l k}(\underbrace{(\boldsymbol{I})_{k j}}_{\text {par }}+\underbrace{(\boldsymbol{U})_{k j}}_{\text {gra-par }}+\cdots+\underbrace{\left(\boldsymbol{U}^{p-1}\right)_{k j}}_{\text {anc }})$.
- $V_{l j} \neq 0$ if there exist k, r such that $W_{l k} \neq 0$ and $\left(\boldsymbol{U}^{r}\right)_{k j} \neq 0$.

Estimation of \boldsymbol{V}

- For $j=1, \cdots, p$,

$$
\begin{equation*}
\widehat{\boldsymbol{V}}_{\bullet j}=\arg \min _{V_{\bullet j}}(2 n)^{-1} \sum_{i=1}^{n}\left(Y_{i j}-\boldsymbol{V}_{\bullet j}^{\top} \boldsymbol{X}_{i}\right)^{2} \quad \text { s.t. } \quad \sum_{l=1}^{q} I\left(V_{l j} \neq 0\right) \leq K_{j} ; \tag{6}
\end{equation*}
$$

- $1 \leq K_{j} \leq q \rightarrow$ tuning parameter controlling sparsity \& chosen by CV.
- Variable selection (TLP, DC programming)

Peeling algorithm for identifying all ancestral relationships

(1) (Initialization) $\hat{\boldsymbol{V}}^{[1]}=\hat{\boldsymbol{V}}$. Begin iteration $h=0, \cdots$:
(2) (Leaf-IV pairs)
(a) Identify rows of $\hat{\boldsymbol{V}}$ with smallest ℓ_{0}-norm. Restore the indices in $A^{[h]}=\left\{\ell^{*}: l^{*}=\arg \min \left\|\widehat{V}_{\left.\right|_{0}}^{[h]}\right\|_{0}\right\}$ for all IVs associated with leaf variables.
(b) Identify largest absolute element index of the rows for each $I^{*} \in A^{[h]}: B_{l^{*}}^{[h]}=\left\{j^{*}: j^{*}=\arg \max \left|\widehat{V}_{l^{*} j}^{[h]}\right|\right\}$ for any $l^{*} \in A^{[h]}$ to identify all leaf-IV $X_{F^{*}} \rightarrow Y_{j^{*}}$ pairs.
(3) (Ancestral relationships) Identify ancestral relationships $Y_{j^{*}} \rightsquigarrow Y_{k}$ if $\widehat{V}_{l^{*} k} \neq 0$ for all $l^{*} \in A^{[h]}$ such that $X_{l^{*}} \rightarrow Y_{j^{*}} \& Y_{k}$ has been already removed for $k \in B^{[h-1]}$.
(4) (Peeling-off) Remove leaf-IV pairs. Let $\hat{\boldsymbol{V}}^{[h+1]}=\hat{\boldsymbol{V}}_{\backslash\left(A^{[h]}, B^{[h]}\right)}^{[h]}$, where $\hat{\boldsymbol{V}}_{\mid\left(A^{[h]}, B^{[h]}\right)}^{[h]}$ is a submatrix by removing rows \& columns indexed by $A^{[h]}$ and $B^{[h]}$ from $\hat{V}^{[h]}$.

- [5] (Termination) $h \rightarrow h+1$ \& repeat Steps 2-4 until removing all Y_{j} 's.

Identifying $\mathrm{Pa}(j)$ from $\mathrm{An}(j)$

- Structure eq: $Y_{j}=\sum_{k \in \operatorname{Pa}(j)} Y_{k}+\sum_{l \in \operatorname{lnt}(j)} W_{j l} X_{l}+\varepsilon_{j}$;
- Constrained regression:

$$
Y_{j}=\sum_{k \in \operatorname{An}(j)} U_{j k} Y_{k}+\sum_{l \in \operatorname{lnt}(\operatorname{An}(j))} W_{j l} X_{I}+\varepsilon_{j} .
$$

- For $j=1, \cdots, p$,
$\left(\hat{U}_{j k}, \hat{W}_{j l}\right)=\arg \min _{j_{j k}, W_{j l}}(2 n)^{-1} \sum_{i=1}^{n}\left(Y_{i j}-\sum_{k \in \operatorname{An}(j)} U_{j k} Y_{i k}-\sum_{l \in \operatorname{lnt}(\operatorname{An}(j))} W_{j l}\right.$

$$
\text { s.t. } \quad \sum l\left(\left|U_{j k}\right| \neq 0\right)+l\left(\left|W_{j l}\right| \neq 0\right) \leq K_{j}^{\prime} ;
$$

- $\operatorname{An}(j)=\left\{k: \hat{U}_{j k} \neq 0\right\}$.

Extension: Interventional models with confounders

- Chen L, Li C, Shen X, Pan W (2023). Discovery and Inference of a Causal Network with Hidden Confounding. JASA.
- Add q intervention variables $\left\{X_{1}, X_{2}, \ldots, X_{q}\right\}$ into (2).

$$
\begin{equation*}
Y_{j}=\sum_{k \neq j} U_{j k} Y_{k}+\sum_{l=1}^{q} W_{j l} X_{I}+h_{j}+\varepsilon_{j}, \quad \varepsilon_{j} \sim N\left(0, \sigma_{j}^{2}\right) ; \quad j=1, \ldots, p \tag{7}
\end{equation*}
$$

- $h_{1}, \cdots, h_{p} \sim N(0, \Sigma)$: unmeasured confounders.
- Unmeasured confounders: $h_{j} ; j=1, \ldots, p$.
- Unknown interventions: Unknown location and strength $W_{l j}$.
- Model is not identifiable without IVs. Use IV to treat confounding effects.
- Alternative: Li C, Shen X, Pan W. (2023). Nonlinear causal discovery with confounders. JASA. As in (7),

$$
Y_{j}=f_{j}\left(Y_{p a(j)}\right)+h_{j}+\varepsilon_{j},
$$

References

- Hastie, T., Tibshirani, R., and Friedman, J. (2001). Elements of Statistical Learning. Springer. Chapter 17
- Jordan, M.I. (2004). Graphical models. Statistical Sciences, 19, 140-155
- Janková, Jana and van de Geer, Sara (2018). Inference in high-dimensional graphical models. arXiv preprint arXiv:1801.08512.
- Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9, 432-441.
- d'Aspremont, A., Banerjee, O., and Ghaoui. EL. (2008) First-order methods for sparse covariance selection. SIAM. J. Matrix Anal. \& Appl., 30, 56.
- Li, C., Shen, X., and Pan, W. (2020). Likelihood ratio tests for a large directed acyclic graph. Journal of American Statistical Association. 115, 1304-1319.
- Li, C., Shen, X., and Pan, W. (2023). Inference for a large directed acyclic graph with unspecified interventions. arXiv:2110.03805. Journal of Machine Learning Research, 24, 73.
- Guo, J., Levina, E., Michailidis, G. and Zhu (2010). Joint estimation of multiple graphical models. Biometrika, 98, 1-15.
- Mazumder, R., and Hastie, T. (2012) The graphical Iasso: New insights and alternatives. Electrical Journal of Statistics, 6, 2125-2149.
- Peters, J. and Bühlmann, P. (2014). Identifiability of Gaussian structural equation models with equal error variances, Biometrika, 101, 219-228.
- Zhu, Y., Shen, X. and Pan, W. (2014). Structural pursuit over multiple undirected graphs. Journal of American Statistical Association. 109, 1683-1696.

[^0]: ${ }^{1}$ Shen, Pan
\& Zhu, 2012.

