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Linear Model and Least Squares

I Data: (Yi ,Xi ), Xi = (Xi1, ...,Xip)′, i = 1, ..., n.
Yi : continuous

I LM: Yi = β0 +
∑p

j=1 Xijβj + εi ,

εi ’s iid with E (εi ) = 0 and Var(εi ) = σ2.

I RSS(β) =
∑n

i=1(Yi − β0 −
∑p

j=1 Xijβj)
2 = ||Y − Xβ||22.

I LSE (OLSE): β̂ = arg minβ RSS(β) = (X ′X )−1X ′Y .

I Nice properties: Under true model,
E (β̂) = β,
Var(β̂) = σ2(X ′X )−1,
β̂ ∼ N(β,Var(β̂)),
Gauss-Markov Theorem: β̂ has min var among all linear
unbiased estimates.



I Some questions:
σ̂2 = RSS(β̂)/(n − p − 1).
Q: what happens if the denominator is n?
Q: what happens if X ′X is (nearly) singular?

I What if p is large relative to n?

I Variable selection:
forward, backward, stepwise: fast, but may miss good ones;
best-subset: too time consuming.
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FIGURE 3.6. Comparison of four subset-selection
techniques on a simulated linear regression problem
Y = XT β + ε. There are N = 300 observations
on p = 31 standard Gaussian variables, with pair-
wise correlations all equal to 0.85. For 10 of the vari-
ables, the coefficients are drawn at random from a
N(0, 0.4) distribution; the rest are zero. The noise
ε ∼ N(0, 6.25), resulting in a signal-to-noise ratio of
0.64. Results are averaged over 50 simulations. Shown
is the mean-squared error of the estimated coefficient

β̂(k) at each step from the true β.



Shrinkage or regularization methods

I Use regularized or penalized RSS:

PRSS(β) = RSS(β) + λJ(β).

λ: penalization parameter to be determined;
(thinking about the p-value thresold in stepwise selection, or
subset size in best-subset selection.)
J(): prior; both a loose and a Bayesian interpretations; log
prior density.

I Ridge: J(β) =
∑p

j=1 β
2
j ; prior: βj ∼ N(0, τ2).

β̂R = (X ′X + λI )−1X ′Y .

I Properties: biased but small variances,
E (β̂R) = (X ′X + λI )−1X ′Xβ,
Var(β̂R) = σ2(X ′X + λI )−1X ′X (X ′X + λI )−1 ≤ Var(β̂),
df (λ) = tr [X (X ′X + λI )−1X ′] ≤ df (0) = tr(X (X ′X )−1X ′) =
tr((X ′X )−1X ′X ) = p,



I Lasso: J(β) =
∑p

j=1 |βj |.
Prior: βj Laplace or DE(0, τ2);

No closed form for β̂L.

I Properties: biased but small variances,
df (β̂L) = # of non-zero β̂Lj ’s (Zou et al ).

I Special case: for X ′X = I , or simple regression (p = 1),
β̂Lj = ST(β̂j , λ) = sign(β̂j)(|β̂j | − λ)+,
compared to:
β̂Rj = β̂j/(1 + λ),

β̂Hj = HT(β̂j , λ) = β̂j I (β̂j > λ),

β̂Bj = HT2(β̂j ,M) = β̂j I (rank(β̂j) ≤ M).

I A key property of Lasso: β̂Lj = 0 for large λ, but not β̂Rj .
–simultaneous parameter estimation and selection.



I Note: for a convex J(β) (as for Lasso and Ridge), min PRSS
is equivalent to:
minRSS(β) s.t. J(β) ≤ t.

I Offer an intutive explanation on why we can have β̂Lj = 0; see
Fig 3.11.
Theory: |βj | is singular at 0; Fan and Li (2001).

I How to choose λ?
obtain a solution path β̂(λ), then, as before, use tuning data
or CV or model selection criterion (e.g. AIC or BIC).

I Least Angle Regression (LARS): fast to find solution paths in
LMs.

I Example: R code ex3.1.r
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FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |β1|+ |β2| ≤ t and β2

1 + β2
2 ≤ t2,

respectively, while the red ellipses are the contours of
the least squares error function.
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FIGURE 3.8. Profiles of ridge coefficients for the
prostate cancer example, as the tuning parameter λ is
varied. Coefficients are plotted versus df(λ), the ef-
fective degrees of freedom. A vertical line is drawn at
df = 5.0, the value chosen by cross-validation.



Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 3

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

2
0.

0
0.

2
0.

4
0.

6

Shrinkage Factor s

C
oe

ffi
ci

en
ts

lcavol

lweight

age

lbph

svi

lcp

gleason

pgg45

FIGURE 3.10. Profiles of lasso coefficients, as the
tuning parameter t is varied. Coefficients are plot-

ted versus s = t/
Pp

1 |β̂j |. A vertical line is drawn at
s = 0.36, the value chosen by cross-validation. Com-
pare Figure 3.8 on page 9; the lasso profiles hit zero,
while those for ridge do not. The profiles are piece-wise
linear, and so are computed only at the points displayed;
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I Lasso: biased estimates; alternatives:

I Relaxed lasso: 1) use Lasso for VS; 2) then use LSE or MLE
on the selected model.

I Use a non-convex penalty:
SCAD: eq (3.82) on p.92;
Bridge J(β) =

∑
j |βj |q with 0 < q < 1;

Adaptive Lasso (Zou 2006): J(β) =
∑

j |βj |/|β̃j ,0|;
Truncated Lasso Penalty (Shen, Pan &Zhu 2012, JASA):
TLP(β; τ) =

∑
j min(|βj |, τ), or

TLP(β; τ) =
∑

j min(|βj |/τ, 1)→ I (β 6= 0) as τ →0+.
MCP: ...

I Choice b/w Lasso and Ridge: bet on a sparse model?
risk prediction for GWAS (Austin, Pan & Shen 2013, SADM).

I Elastic net (Zou & Hastie 2005):

J(β) =
∑
j

α|βj |+ (1− α)β2j

may select more (correlated) Xj ’s.
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I Group Lasso: a group of variables β(g) = (βj1, ..., βjpg )′ are to
be 0 (or not) at the same time,

J(β) =
∑
g

√
pg ||β(g)||2

L2-norm; not L1/Lasso or squared L2/Ridge.
better in VS (but worse for parameter estimation?)

I Group SCAD: J(β) =
∑

g
√
pgSCAD(||β(g)||2)

I Group TLP: J(β, τ) =
∑

g
√
pgTLP(||β(g)||2; τ)

I Sparse Group Lasso: J(β) = (1−α)
∑

g
√
pg ||β(g)||2 +α||β||1

I Grouping/fusion penalties: encouraging equalities b/w βj ’s
(or |βj |’s).
I Fused Lasso: J(β) =

∑p−1
j=1 |βj − βj+1|

J(β) =
∑

(j,k)∈G |βj − βk |
I Generalized Lasso: J(β) = ||Dβ||1
I Grouping pursuit (Shen & Huang 2010, JASA):

J(β; τ) =

p−1∑
j=1

TLP(βj − βj+1; τ)



I Grouping penalties:
I Zhu, Shen & Pan (2013, JASA):

J2(β; τ) =

p−1∑
j=1

TLP(|βj | − |βj+1|; τ);

J(β; τ1, τ2) =

p∑
j=1

TLP(βj ; τ1) + J2(β; τ2);

I Kim, Pan & Shen (2013, Biometrics):

J ′2(β) =
∑
j∼k
|I (βj 6= 0)− I (βk 6= 0)| ;

J2(β; τ) =
∑
j∼k
|TLP(βj ; τ)− TLP(βk ; τ)| ;

I Dantzig Selector (§3.8).

I Theory (§3.8.5); Greenshtein & Ritov (2004) (persistence);
Zou 2006 (non-consistency) ...



Logistic regression
I Binary or multinomial logit model: for k = 1, ...,K − 1,

log
Pr(k |x)

Pr(K |x)
= β0,k + x ′β1,k ,

or equivalently,

Pr(k |x) =
exp(β0,k + x ′β1,k)

1 +
∑K−1

l=1 exp(β0,k + x ′β1,k)
.

Then Ĝ (x) = arg maxk Pr(k|x).
I x can be expanded to include high-order terms.
I Parameter estimation: MLE

Note: approx equivalent to fitting multiple binary logit models
separetely (Begg & Gray, 1984, Biometrika).

I Logistic reg vs L/QDA: the former is more general; the latter
has a stronger assumption and thus possibly more efficient if
...; Logistic reg is quite good.

I Example code: ex4.1.r



Penalized logistic regression (§18.3.2, 18.4)

I Need VS or regularization for a large p.

I Add a penalty term J(β) to − log L
J(β) can be Lasso, ..., as before.

I Computing algorithms: a Taylor expansion (i.e. quadratic
approx) of log L, then the same as penalized LR.

I R package glmnet: an elastic net penalty.
hence do either Lasso or Ridge (or both).



R packages for penalized GLMs (and Cox PHM)

I glmnet: Ridge, Lasso and Elastic net.

I ncvreg: SCAD, MCP.

I glmtlp: TLP.

I grpreg: group Lasso, group SCAD, ...

I seagull, SGL: sparse group Lasso.

I genlasso: generalized Lasso for LMs, including fused Lasso.

I FGSG: grouping/fusion penalties (based on Lasso, TLP, etc)
for LMs

I More general convex programming: CVXR; like CVX, CVXPY.

I Example 3.3.R



Computational Algorithms

I Quadratic programming: the original for Lasso; slow.

I LARS (§3.8): the solution path is piece-wise linear; at a cost
of fitting several single LMs; not general?

I Incremental Forward Stagewise Regression (§3.8): approx;
related to boosting.

I A simple (and general) way: |βj | = β2j /|β̂
(r)
j |;

truncate a current estimate |β̂(r)j | ≈ 0 at a small ε.

I Coordinate-descent algorithm (§3.8.6): update each βj while
fixing others at the current estimates–recall we have a
closed-form solution for a single βj !
simple and general but not applicable to grouping penalties.

I ADMM (Boyd et al 2011).
http://stanford.edu/~boyd/admm.html

I For TLP: iterating b/w Difference of Convex (DC) (or MM
alg.) and (weighted) lasso

http://stanford.edu/~boyd/admm.html


Inference

I Q: How to get a p-value or CI for a predictor?
Challenges: biased estimates; selection bias

I Sample splitting (to two parts): 1. using the training data for
(Lasso) penalized reg (for VS); 2. using the validation data to
fit the selected model for inference by OLSE or MLE.
Refs: Wasserman & Roeder (2009, AoS); Meinshausen, Meier &

Bühlmann (2009, JASA).

+: simple; more general.
-: loss of efficiency. Better with repeated/multiple splitting.
R package: hdi, function multi.split() or hdi().

I Debiased/de-sparsified lasso (or lasso projection): next page.
R package: hdi, function lasso.proj().

I Ref: Dezeure et al (2015, Stat Sci).
https://arxiv.org/pdf/1408.4026.pdf

Example: ex3.4.R

https://arxiv.org/pdf/1408.4026.pdf


Lasso projection

I Model: Y = Xβ + ε , X = (X (1),X (2), ...,X (p))

I Fact 1: βj 6= bj unless ...
working model: Y = X (j)bj + e

I Fact 2: LSEs β̂j = b̂j if p < n AND
Y = Z (j)bj + e, Z (j) is a residual vector of regressing X (j) on
all other X (k)’s with k 6= j .
Why? Z (j)⊥X (k)

b̂j = (Z (j))′Y /(Z (j))′Z (j) = (Z (j))′Y /(Z (j))′X (j).

E (b̂j) = βj +
∑

k 6=k Pjkβk , Pjk = (Z (j))′X (k)/(Z (j))′X (j).
Pjk = 0.

I For p > n, use Lasso to get Z (j), then Pjk 6= 0.

β̂C ,j = b̂j −
∑

k 6=k Pjk β̂k ,

β̂: Lasso estimates.
β̂C ,j ∼ N(0, vj).



Inference

I TLP/SCAD: if interested in βj (that can be high-d for TLP),
1. use the whole sample to fit a penalized reg model by
penalizing all parameters except βj ; 2. apply the usual Wald
or LRT to get the p-value or CI for βj .
Refs: Zhu, Shen & Pan (2020, JASA); Shi et al (2019, AoS).

I Model-X Knockoffs: FDR control for VS.
R package: knockoff.
https://web.stanford.edu/group/candes/knockoffs/

index.html

I Conformal inference: can give prediction intervals; ...
R package: https://github.com/ryantibs/conformal

https://web.stanford.edu/group/candes/knockoffs/index.html
https://web.stanford.edu/group/candes/knockoffs/index.html
https://github.com/ryantibs/conformal


Sure Independence Screening (SIS)

I Q: penalized (or stepwise ...) regression can do automatic VS;
just do it?

I Key: there is a cost/limit in performance/speed/theory.

I Q2: some methods (e.g. LDA/QDA/RDA) do not have VS,
then what?

I Going back to basics: first conduct VS in marginal analysis,
1) Y ∼ X1, Y ∼ X2, ..., Y ∼ Xp;
2) choose a few top ones, say p1;
p1 can be chosen somewhat arbitrarily, or treated as a tuning
parameter
3) then apply penalized reg (or other VS) to the selected p1
variables.

I Called SIS with theory (Fan & Lv, 2008, JRSS-B).
R package SIS;
iterative SIS (ISIS); why? a limitation of SIS ...



Using Derived Input Directions

I PCR: PCA on X , then use the first few PCs as predictors.
Use a few top PCs explaining a majority (e.g. 85% or 95%) of
total variance;
# of components: a tuning parameter; use (genuine) CV;
Used in genetic association studies, even for p < n to improve
power.
+: simple;
-: PCs may not be related to Y .



I Partial least squares (PLS): multiple versions; see Alg 3.3.
Main idea:
1) regress Y on each Xj univariately to obtain coef est φ1j ;
2) first component is Z1 =

∑
j φ1jXj ;

3) regress Xj on Z1 and use the residuals as new Xj ;
4) repeat the above process to obtain Z2, ...;
5) Regress Y on Z1, Z2, ...

I Choice of # components: tuning data or CV (or AIC/BIC?)

I Contrast PCR and PLS:
PCA: maxα Var(Xα) s.t. ....;
PLS: maxα Cov(Y ,Xα) s.t. ...;
Continuum regression (Stone & Brooks 1990, JRSS-B)

I Penalized PCA (...) and Penalized PLS (Huang et al 2004,
BI; Chun & Keles 2012, JRSS-B; R packages ppls, spls).

I Example code: ex3.2.r
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FIGURE 3.7. Estimated prediction error curves and
their standard errors for the various selection and
shrinkage methods. Each curve is plotted as a func-
tion of the corresponding complexity parameter for that


