#### Network Analysis

#### Wei Pan (& Xiaotong Shen)

Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: panxx014@umn.edu

PubH 8475/Stat 8056

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

## Outline

- Network concepts/statistics
- Network community detection

## Basics

- Network/graph  $\mathcal{G} = (V, E)$ :
  - A set of nodes/vertices  $V = \{v_1, \ldots, v_p\}$ .
  - A set of edges/links between nodes  $E = \{e_1, \ldots, e_m\}$ .
- p × p adjacency matrix A: A<sub>ij</sub> = 0 or 1 (or w<sub>i</sub>) for a binary (or weighted network).
   Undirected network: A is symmetric
- Density: the proportion of edges present in a graph, i.e. (# edges)/(the maximum possible number of edges).

- The number of edges observed is |E|.
- The number of possible edges is
  - p(p-1)/2 in an undirected graph
  - ▶ p(p − 1) in a directed graph

## Nodal Degree

- Nodes vary in their involvement in the network. For binary relations, this heterogeneity can be summarized by the nodal degree.
  - Undirected relation:
    - The degree of a node is the node's number of edges.
  - Directed relation:
    - The outdegree of a node is the node's number of outgoing edges/links.
    - The indegree of a node is the node's number of incoming edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Nodal Degree

The degrees are easy to calculate with adjacency matrix A:

$$egin{array}{rcl} d_i^o &=& \displaystyle\sum_{j:j
eq i} A_{ij} \ d_i^i &=& \displaystyle\sum_{j:j
eq i} A_{ji} \end{array}$$

 This calculation works for both directed and undirected relations. Specifically, for an undirected relation,

$$d_i^o = d_i^i = d_i$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## Summary of Degrees

- Let d = {d<sub>1</sub>,..., d<sub>p</sub>} be a set of nodal degrees (either out-degrees, in-degrees, or undirected degrees).
  - The entries of d are often summarized further with

• Mean: 
$$\bar{d} = \sum d_i/p = (p-1)\bar{U}$$

• Variance: 
$$s_d^2 = \sum (d_i - \bar{d})^2 / (p-1)$$

• Degree distribution is a set of counts  $\{f_0, \ldots, f_{p-1}\}$  where

 $f_k = \#\{d_i = k\} =$  number of nodes with degree equal to k

#### Some concepts

#### Node centrality:

- measures "importance" of a node in a network: e.g., deletion of which genes in a gene regulatory network is likely to be lethal to the corresponding organism; how critical is a given router in an Internet network to the flow of traffic...
- some common centrality measures:
  - Closeness: 1/∑<sub>u∈V</sub> dist(u, v); "central" means the node is "close" to many other nodes;
  - betweenness:  $\sum_{s,t \in V} \sigma(s,t|v)/\sigma(s,t)$ , where  $\sigma(s,t|v)$  is the total number of shortest paths between *s* and *t* that pass through *v*; measures the extent to which a vertex is located "between" other pairs of vertices;

### Some concepts

#### Network cohesion:

- measures the extent to which subsets of nodes are cohesive / stuck together; e.g., do friends of a given actor in a social network tend to be friends of one another as well; what collections of proteins in a cell appear to work closely together...
- Some common cohesion measures:
  - clique: A clique is a complete subgraph.
  - maximal clique: is a clique but no other nodes can be added to make it a larger clique.
  - density of a subgraph
- Connectivity
  - "small worlds" property: the average distance between nodes is small

## Network community detection: Outline

- Introduction
- Spectral clustering
- Hierachical clustering
- Modularity-based methods
- Model-based methods
- Key refs:
  - 1.Newman MEJ
  - 2. Zhao Y, Levina E, Zhu J (2012, Ann Statist 40:2266-2292).
  - 3. Fortunato S (2010, Physics Reports 486:75-174).
- R package igraph: drawing networks, calculating some network statistics, some community detection algorithms, ...

#### Introduction

- Given a binary (undirected) network/graph: G = (V, E),
   V = {1, 2, ..., n}, set of nodes; E, set of edges.
   Adjacency matrix A = (A<sub>ij</sub>): A<sub>ij</sub> = 1 if there is an edge/link
   b/w nodes i and j; A<sub>ij</sub> = 0 o/w. (A<sub>ii</sub> = 0)
- Goal: assign the nodes into K "homogeneous" groups. often means dense connections within groups, but sparse b/w groups.

Why? Figs 1-4 in Fortunato (2010).
 Brain networks (Meunier et al, 2010).
 Gene networks (Langfelder and Horvath, 2008).

# Spectral clustering

- Laplacian L = D A, or ...
  - $D = \text{Diag}(D_{11}, ..., D_{nn}), \ D_{ii} = \sum_j A_{ij}.$
- Intuition:

If a network separates perfectly into K communities, then L (or A) is block diagonal (after some re-ordering of the rows/columns).

If not perfectly but nearly, then the eigenvectors of L are (nearly) linear combinations of the indicator vectors.

- Apply K-means (or ..) to a few (K) eigenvectors corresponding to the smallest eigenvalues of L.
   Note: the smallest eigen value is 0, corresponding to eigenvector 1.
- Two clusters ⇒ spectral bisection: use the eigenvector of the second smallest eigen value; partition by its positive/negative elements.

Generally, repeatedly apply the above to each cluster... vs apply SC once?

► Widely used; some theory (e.g consistency). ( → ( = ) ( = ) ( → ( = ) )

## Modified spectral clustering

- SC may not work well for sparse networks.
- Regularized SC (Qin and Rohe): replace D with D<sub>τ</sub> = D + τI for a small τ > 0.
- SC with perturbations (Amini, Chen, Bickel, Levina, 2013, Ann Statist 41: 2097-2122): regularize A by adding a small positive number on a random subset of off-diagonals of A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Hierarchical clustering

- Need to define some similarity or distance b/w nodes.
- Euclidean distance:  $A_{i.} = (A_{i1}, A_{I2}, ..., A_{in})'$ ,

$$x_{ij} = ||A_{i.} - A_{j.}||_2$$

Or, Pearson's corr,

$$x_{ij} = \operatorname{corr}(A_{i.}, A_{j.})$$

- Then apply a hierarchical clustering. can be used to re-arrange the rows/columns of A to get a nearly block-diagonal A.
- Fig 3 in Neuman.
- Fig 2 in Meunier et al (2010).

# Algorithms based on edge removal

- Divisive: edges are progressively removed.
- ► Which edges? "bottleneck" ones.
- edge betweenness is defined to be the number of shortest paths between all pairs of all nodes that run through the two nodes.
- Algorithm (Girvam and Neuman 2002, PNAS):
   1) calculate *edge betweenness* for each remaining edge in a network;
  - 2) remove the edge with the higest edge betweenness;
  - 3) repeat the above until ...
- A possible stopping critarion: *modularity*, to be discussed.
- Fig 4 in Neuman.
- Remarks: slow; some modifications, e.g. a Monte Carlo version in calculating *edge betweenness* using only a random subset of all pairs; or use a different criterion.
- ► R package igraph: cluster\_edge\_betweenness()

#### Modularity-based methods

Notation: degree of node *i*:  $d_i = D_{ii} = \sum_{j=1}^n A_{ij}$ , (*twice*) total number of edges:  $m = \sum_{i=1}^n d_i$ , Community assignment:  $C = (C_1, C_2, ..., C_n)$ ; **unknown**,  $C_i \in \{1, 2, ..., K\}$ : community containing node *i*.

Modularity: given C,

$$Q = Q(C) = \frac{1}{2m} \sum_{i,j} \left( A_{ij} - \frac{d_i d_j}{m} \right) I(C_i = C_j).$$

Intuition: obs'ed - exp'ed

Key: a combinatorial optimization problem!

seeking exact solution will be too slow  $\implies$  many *approximate* algorithms, such as greedy searches (e.g. genetic algorithms, simulated annealing), relaxed algorithms, ...

Newman (2003): repeat: combining two nodes i and j with  $A_{ij} = 1$  and the largest increase (or smallest decrease) in Q; until all nodes in one community.

 $\implies$  hierarchical; choose one with the largest Q.

- Very nonparametric?!
- Problems: resolution limit; too many local solutions. cannot detect relatively small communities; why? an implicit null model for the *whole network* (Fortunato 2010, p.40).
- R package igraph: greedy search, approx./fast: cluster\_fast(); combinatorial search, exact/slow: cluster\_optimal(); heuristic, hierarchical communities for large networks (e.g. millions of nodes); see Blondel et al (2008) in the manual: cluster\_louvain().

### Model-based methods

- Stochastic block model SBM (Holland et al 1983):
  1) a K × K probability matrix P;
  2) A<sub>ii</sub> ~ Bin(1, P<sub>Ci</sub>, C<sub>i</sub>) independently.
- Simple; can model dense/weak within-/between-community edges.

But, treat all nodes/edges in a community equally; cannot model *hub* nodes!

Scale-free network: node degree distribution Pr(k) is heavy-tailed; a power law.

- SBM with K = 1: Erdos-Renyi Random Graph.
- Degree-corrected SBM (DCSBM) (Karrer and Newman 2011):

   P; each node *i* has a degree parameter θ<sub>i</sub> (with some constraints for identifiability);
   A<sub>ii</sub> ~ Bin(1, θ<sub>i</sub>θ<sub>i</sub>P<sub>Ci</sub>, C<sub>i</sub>) independently

#### More notations:

 $n_k(C) = \sum_{i=1}^n I(C_i = k)$ , number of nodes in community k;  $O_{kl} = \sum_{i,j=1}^n A_{ij}I(C_i = k, C_j = l)$ , number of edges b/w communities  $k \neq l$ ;

 $O_{kk} = \sum_{i,j=1}^{n} A_{ij} I(C_i = k, C_j = k)$ , (twice) number of edges within community k;

 $O_k = \sum_{l=1}^{K} O_{kl}$ , sum of node degrees in community k;  $m = \sum_{i=1}^{n} d_i$ , (twice) the number fo edges in the network.

Objective function: A profile likelihood (profiling out nuisance parameters P and θ's based on a Poisson approximation to a binomial).

Given a likelihood L(C, P),

a profile likelihood  $L^*(C) = \max_P L(C, P) = L(C, \hat{P}(C)).$ 



$$Q_{SB}(C) = \sum_{k,l=1}^{K} (O_{kl} \log \frac{O_{kl}}{n_k n_l}).$$

• DCSBM:  $Q_{DC}(C) = \sum_{k,l=1}^{K} (O_{kl} \log \frac{O_{kl}}{O_k O_l}).$ 

Neuman-Girvan modularity:

$$Q_{NG}(C) = \frac{1}{2m} \sum_{k} (O_{kk} - \frac{O_k^2}{m}).$$

- Remarks: Still a combinatorial optimization problem; better theoretical properties.
- Numerical examples in Zhao et al (2012).

## Other topics

- Weighted networks; with or without negative weights (e.g. Pearson's correlations).
- Overlapping communities.
- Time-varying (dynamic) networks.
- With covariates. How to model covariates?
- Fast (approximate) algorithms; theory.
- WGCNA (Weighted Gene Co-expression Network Analysis): Langfelder and Horvath (2008, BI).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00