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Outline

I Network concepts/statistics

I Network community detection



Basics

I Network/graph G = (V ,E ):
I A set of nodes/vertices V = {v1, . . . , vp}.
I A set of edges/links between nodes E = {e1, . . . , em}.

I p× p adjacency matrix A: Aij = 0 or 1 (or wi ) for a binary (or
weighted network).
Undirected network: A is symmetric

I Density: the proportion of edges present in a graph, i.e. (#
edges)/(the maximum possible number of edges).

I The number of edges observed is |E |.
I The number of possible edges is

I p(p − 1)/2 in an undirected graph
I p(p − 1) in a directed graph



Nodal Degree

I Nodes vary in their involvement in the network. For binary
relations, this heterogeneity can be summarized by the nodal
degree.
I Undirected relation:

I The degree of a node is the node’s number of edges.

I Directed relation:
I The outdegree of a node is the node’s number of outgoing

edges/links.
I The indegree of a node is the node’s number of incoming

edges.



Nodal Degree

I The degrees are easy to calculate with adjacency matrix A:

do
i =

∑
j :j 6=i

Aij

d i
i =

∑
j :j 6=i

Aji

I This calculation works for both directed and undirected
relations. Specifically, for an undirected relation,

do
i = d i

i = di



Summary of Degrees

I Let d = {d1, . . . , dp} be a set of nodal degrees (either
out-degrees, in-degrees, or undirected degrees).
I The entries of d are often summarized further with
I Mean: d̄ =

∑
di/p = (p − 1)Ū

I Variance: s2d =
∑

(di − d̄)2/(p − 1)
I Degree distribution is a set of counts {f0, . . . , fp−1} where

fk = #{di = k} = number of nodes with degree equal to k



Some concepts

I Node centrality:
I measures “importance” of a node in a network: e.g., deletion

of which genes in a gene regulatory network is likely to be
lethal to the corresponding organism; how critical is a given
router in an Internet network to the flow of traffic...

I some common centrality measures:
I closeness: 1/

∑
u∈V dist(u, v); “central” means the node is

“close” to many other nodes;
I betweenness:

∑
s,t∈V σ(s, t|v)/σ(s, t), where σ(s, t|v) is the

total number of shortest paths between s and t that pass
through v ; measures the extent to which a vertex is located
“between” other pairs of vertices;

I ...



Some concepts

I Network cohesion:
I measures the extent to which subsets of nodes are cohesive /

stuck together; e.g., do friends of a given actor in a social
network tend to be friends of one another as well; what
collections of proteins in a cell appear to work closely
together...

I Some common cohesion measures:
I clique: A clique is a complete subgraph.
I maximal clique: is a clique but no other nodes can be added

to make it a larger clique.
I density of a subgraph

I Connectivity
I “small worlds” property: the average distance between nodes

is small



Network community detection: Outline

I Introduction

I Spectral clustering

I Hierachical clustering

I Modularity-based methods

I Model-based methods

I Key refs:
1.Newman MEJ
2. Zhao Y, Levina E, Zhu J (2012, Ann Statist 40:2266-2292).
3. Fortunato S (2010, Physics Reports 486:75-174).

I R package igraph: drawing networks, calculating some
network statistics, some community detection algorithms, ...



Introduction

I Given a binary (undirected) network/graph: G = (V ,E ),
V = {1, 2, ..., n}, set of nodes; E , set of edges.
Adjacency matrix A = (Aij): Aij = 1 if there is an edge/link
b/w nodes i and j ; Aij = 0 o/w. (Aii = 0)

I Goal: assign the nodes into K “homogeneous” groups.
often means dense connections within groups, but sparse b/w
groups.

I Why? Figs 1-4 in Fortunato (2010).
Brain networks (Meunier et al, 2010).
Gene networks (Langfelder and Horvath, 2008).



Spectral clustering
I Laplacian L = D − A, or ...

D = Diag(D11, ...,Dnn), Dii =
∑

j Aij .
I Intuition:

If a network separates perfectly into K communities, then L
(or A) is block diagonal (after some re-ordering of the
rows/columns).
If not perfectly but nearly, then the eigenvectors of L are
(nearly) linear combinations of the indicator vectors.

I Apply K-means (or ..) to a few (K ) eigenvectors
corresponding to the smallest eigenvalues of L.
Note: the smallest eigen value is 0, corresponding to
eigenvector 1.

I Two clusters =⇒ spectral bisection: use the eigenvector of
the second smallest eigen value; partition by its
positive/negative elements.
Generally, repeatedly apply the above to each cluster... vs
apply SC once?

I Widely used; some theory (e.g consistency).



Modified spectral clustering

I SC may not work well for sparse networks.

I Regularized SC (Qin and Rohe): replace D with Dτ = D + τ I
for a small τ > 0.

I SC with perturbations (Amini, Chen, Bickel, Levina, 2013,
Ann Statist 41: 2097-2122):
regularize A by adding a small positive number on a random
subset of off-diagonals of A.



Hierarchical clustering

I Need to define some similarity or distance b/w nodes.

I Euclidean distance: Ai . = (Ai1,AI2, ...,Ain)′,

xij = ||Ai . − Aj .||2

I Or, Pearson’s corr,

xij = corr(Ai .,Aj .)

I Then apply a hierarchical clustering.
can be used to re-arrange the rows/columns of A to get a
nearly block-diagonal A.

I Fig 3 in Neuman.

I Fig 2 in Meunier et al (2010).



Algorithms based on edge removal
I Divisive: edges are progressively removed.

I Which edges? ”bottleneck” ones.

I edge betweenness is defined to be the number of shortest
paths between all pairs of all nodes that run through the two
nodes.

I Algorithm (Girvam and Neuman 2002, PNAS):
1) calculate edge betweenness for each remaining edge in a
network;
2) remove the edge with the higest edge betweenness;
3) repeat the above until ...

I A possible stopping critarion: modularity, to be discussed.

I Fig 4 in Neuman.

I Remarks: slow; some modifications, e.g. a Monte Carlo
version in calculating edge betweenness using only a random
subset of all pairs; or use a different criterion.

I R package igraph: cluster edge betweenness()



Modularity-based methods

I Notation:
degree of node i : di = Dii =

∑n
j=1 Aij ,

(twice) total number of edges: m =
∑n

i=1 di ,
Community assignment: C = (C1,C2, ...,Cn); unknown,
Ci ∈ {1, 2, ...,K}: community containing node i .

I Modularity: given C ,

Q = Q(C ) =
1

2m

∑
i ,j

(
Aij −

didj
m

)
I (Ci = Cj).

I Intuition: obs’ed - exp’ed

I Goal: Ĉ = arg maxC Q(C )
Assumption: good to maximize Q, reasonable but ...



I Key: a combinatorial optimization problem!
seeking exact solution will be too slow =⇒ many approximate
algorithms, such as greedy searches (e.g. genetic algorithms,
simulated annealing), relaxed algorithms, ...
Newman (2003): repeat: combining two nodes i and j with
Aij = 1 and the largest increase (or smallest decrease) in Q;
until all nodes in one community.
=⇒ hierarchical; choose one with the largest Q.

I Very nonparametric?!

I Problems: resolution limit; too many local solutions.
cannot detect relatively small communities; why? an implicit
null model for the whole network (Fortunato 2010, p.40).

I R package igraph:
greedy search, approx./fast: cluster fast();
combinatorial search, exact/slow: cluster optimal();
heuristic, hierarchical communities for large networks (e.g.
millions of nodes); see Blondel et al (2008) in the manual:
cluster louvain().



Model-based methods

I Stochastic block model SBM (Holland et al 1983):
1) a K × K probability matrix P;
2) Aij ∼ Bin(1,PCi ,Cj

) independently.

I Simple; can model dense/weak within-/between-community
edges.
But, treat all nodes/edges in a community equally; cannot
model hub nodes!
Scale-free network: node degree distribution Pr(k) is
heavy-tailed; a power law.

I SBM with K = 1: Erdos-Renyi Random Graph.

I Degree-corrected SBM (DCSBM) (Karrer and Newman 2011):
1) P; each node i has a degree parameter θi (with some
constraints for identifiability);
2) Aij ∼ Bin(1, θiθjPCi ,Cj

) independently



I More notations:
nk(C ) =

∑n
i=1 I (Ci = k), number of nodes in community k;

Okl =
∑n

i ,j=1 Aij I (Ci = k ,Cj = l), number of edges b/w
communities k 6= l ;
Okk =

∑n
i ,j=1 Aij I (Ci = k ,Cj = k), (twice) number of edges

within community k ;
Ok =

∑K
l=1Okl , sum of node degrees in community k ;

m =
∑n

i=1 di , (twice) the number fo edges in the network.

I Objective function: A profile likelihood (profiling out nuisance
parameters P and θ’s based on a Poisson approximation to a
binomial).
Given a likelihood L(C ,P),
a profile likelihood L∗(C ) = maxP L(C ,P) = L(C , P̂(C )).



I SBM:

QSB(C ) =
K∑

k,l=1

(Okl log
Okl

nknl
).

I DCSBM:

QDC (C ) =
K∑

k,l=1

(Okl log
Okl

OkOl
).

I Neuman-Girvan modularity:

QNG (C ) =
1

2m

∑
k

(Okk −
O2

k

m
).

I Remarks: Still a combinatorial optimization problem; better
theoretical properties.

I Numerical examples in Zhao et al (2012).



Other topics

I Weighted networks; with or without negative weights (e.g.
Pearson’s correlations).

I Overlapping communities.

I Time-varying (dynamic) networks.

I With covariates. How to model covariates?

I Fast (approximate) algorithms; theory.

I WGCNA (Weighted Gene Co-expression Network Analysis):
Langfelder and Horvath (2008, BI).


