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Outline

* What is RL?

* Q-Learning: DeepMind’s DQN
* Policy methods

* Actor-critic methods

* General comments:
+/-: highly mathematical
+: most similar to human learning; impressive applications (e.g.
DeepMind’s AlphaGo, AlphaZero); rapid development
-: time-consuming, not efficient; unstable, hard to train
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The action-value (Q) function

Math English

Q,, is a function that maps a pair, (s, a), of a state, s, and an action, g, to the
Q,: (s|a) > E(R|a,s,m), expected reward of taking action a in state s, given that we’re using the policy
(or “strategy”) m.

The policy function

Math English

A policy, i, is a mapping from states to the (probabilistically) best actions for

1; s > Pr(Als), wheres € S those states.

The state-value function

Math English

A value function, V_, is a function that maps a state, s, to the expected rewards,

V_:s > E(R|s,m), ) X .
v s> ERls) given that we start in state s and follow some policy, .
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The Bellman equation:

Q. (Spay) <« 1+ y X max[Q,(s,,,,0)]



Original Q function

State

Single Q value

~

/

Retumns
= (09
Action
DeepMind’s modified Q function
Vector of Q values
Returns
State » [0.9,-0.1, 0.5, 0.4]
Q values
N . . 4
05 With probability € select | S
Predicts 09 action
State »
01 g R
04 » Best action
With probability 1 — € select

| S—




Hidden layers

Game state Input layer Output layer
Right
Down

Neural network

Deep Q-network

State: B%* R150 R100
Layer 1 Layer 2

Y

Y

Y

Layer 3

Q values: R?

Y



Initial game 1 Input to

Q-learning with a target network

state S; J

Input to

—

-—[ Q-network ]

|

Target network ]

———

Q

Predicts
Periodically copies Are used
parameters from to train
Predicts
J - Q values

\_[

St+

Game state ]
-
1

-—|' Q values ]

Are used
to take

Y

[

Before: Qnew = Rt + d*max(Q(St+1)), not stable
Now: Qnew = Rt + d*max(Q/(St+1))

Produces new

l

Action a J




State ]
J

Input to
> Q-network

1
J

State

Input to
-

State i

[

1
2

Policy network

(Q values)

Outputs [ Action values ]
h—

Outputs

v

Is input to
] -

Returns

Probability

Action(s)

P(Action)
0.5
0
0.25
1 0.25




Policy methods
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Why? Compared to Q-learning, generally regarded advantageous, even necessary (if the action space is continuous),
but more mathematical...






State-of-the-art:

Policy methods
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