Reinforcement Learning: A Gentle Introduction

PUBH 7475/8475

Based on "Deep Reinforcement Learning in Action" by A. Zai & B. Brown <u>https://www.manning.com/books/deep-reinforcement-learning-in-action</u>

Outline

- What is RL?
- Q-Learning: DeepMind's DQN
- Policy methods
- Actor-critic methods
- General comments:
 - +/-: highly mathematical
 - +: most similar to human learning; impressive applications (e.g. DeepMind's AlphaGo, AlphaZero); rapid development
 - -: time-consuming, not efficient; unstable, hard to train

.

The action-value (Q) function

Math

English

 $Q_{\pi}: (s \mid a) \to E(R \mid a, s, \pi),$

 Q_{π} is a function that maps a pair, (*s*, *a*), of a state, *s*, and an action, *a*, to the expected reward of taking action *a* in state *s*, given that we're using the policy (or "strategy") π .

The policy function

Math	English
π; <i>s</i> → <i>Pr</i> (<i>A</i> <i>s</i>), where <i>s</i> ∈ <i>S</i>	A policy, π , is a mapping from states to the (probabilistically) best actions for those states.
The state-value function	
Math	English
$V_{\pi}: s \rightarrow E(R s,\pi),$	A value function, V_{π} , is a function that maps a state, <i>s</i> , to the expected rewards, given that we start in state <i>s</i> and follow some policy, π .

Q learning: learn the Q function

The Bellman equation:

$$Q_{\pi}(s_{t},a_{t}) \leftarrow r_{t} + \gamma \times max[Q_{\pi}(s_{t+1},a)]$$

Q-learning with a target network

Before: $Q_{new} = Rt + d*max(Q(St+1))$, not stable Now: $Q_{new} = Rt + d*max(Q'(St+1))$

Policy methods

Why? Compared to Q-learning, generally regarded advantageous, even necessary (if the action space is continuous), but more mathematical...

State-of-the-art:

