Semi-Supervised Learning

Wei Pan

Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN 55455

Email: panxx014@umn.edu
PubH 8475/Stat 8056

Outline

- Mixture model: a generative model new: L_{1} penalization for variable selection; Pan et al (2006, Bioinformatics)
- Transductive SVM (TSVM): Wang, Shen \& Pan (2007, CM; 2009, JMLR)
- Self-supervised learning: DL Chen et al (2020)

Introduction

- Biology: Do human blood outgrowth endothelial cells (BOECs) belong to or are closer to large vessel endothelial cells (LVECs) or microvascular endothelial cells (MVECs)?
- Why important? BOECs are being explored for efficacy in endothelial-based gene therapy (Lin et al 2002), and as being useful for vascular diagnostic purposes (Hebbel et al 2005); in each case, it is important to know whether BOEC have characteristics of MVECs or of LVECs.
- Jiang (2005) conducted a genome-wide comparison: microarray gene expression profiles for BOEC, LVEC and MVEC samples were clustered; it was found that BOEC samples tended to cluster together with MVEC samples, suggesting that BOECs were closer to MVECs.
- Two potential shortcomings:

1. Used hierarchical clustering; ignoring the known classes of LVEC and MVEC samples;
Alternative? Semi-supervised learning: treating LVEC and MVEC as known while BOEC unknown (see McLachlan and Basford 1988; Zhu 2006 for reviews).
Here it requires learning a novel class: BOEC may or may not belong to LVEC or MVEC.
2. Used only 37 genes that best discriminate b/w LVEC and MVEC.
Important: result may critically depend on the features or genes being used; the few genes might not reflect the whole picture.
Alternative? Start with more genes; but ...
A dilemma: too many genes might lead to covering true clustering structures; to be shown later.

- For high-dimensional data, necessary to have feature selection, preferably embedded within the learning framework automatic/simultaneous feature selection.
- In contrast to sequential methods: first selecting features and then fitting/learning a model; Pre-selection may perform terribly; Why: selected features may not be relevant at all to uncovering interesting clustering structures, due to the separation between the two steps.
- A penalized mixture model: semi-supervised learning; automatic variable selection simultaneously with model fitting.

Semi-Supervised Learning via Standard Mixture Model

- Data

Given $n K$-dimensional obs's: x_{1}, \ldots, x_{n}; the first n_{0} do not have class labels while the last n_{1} have.
There are $g=g_{0}+g_{1}$ classes: the first g_{0} unknown/novel classes to be discovered. while the last g_{1} known. $z_{i j}=1$ iff x_{j} is known to be in class $i ; z_{i j}=0 \mathrm{o} / \mathrm{w}$.
Note: $z_{i j}$'s are missing for $1 \leq j \leq n_{0}$.

- The log-likelihood is
$\log L(\Theta)=\sum_{j=1}^{n_{0}} \log \left[\sum_{i=1}^{g} \pi_{i} f_{i}\left(x_{j} ; \theta_{i}\right)\right]+\sum_{j=n_{0}+1}^{n} \log \left[\sum_{i=1}^{g} z_{i j} \pi_{i} f_{i}\left(x_{j} ; \theta_{i}\right)\right]$.
- Common to use the EM to get MLE.

Penalized Mixture Model

- Penalized log-likelihood: use a weighted L_{1} penalty;

$$
\log L_{P}(\Theta)=\log L(\Theta)+\lambda \sum_{i} \sum_{k} w_{i k}\left|\mu_{i k}\right|
$$

where $w_{i k}$'s are weights to be given later.

- Penalty: model regularization; Bayesian connection.
- Assume that the data have been standardized so that each feature has sample mean 0 and sample variance 1 .
- Hence, for any k, if $\mu_{1 k}=\ldots=\mu_{g k}=0$, then feature k will not be used.
- L_{1} penalty serves to obtain a sparse solution: $\mu_{i k}$'s are automatically set to 0 , realizing variable selection.
- EM algorithm: E-step and M-step for other parameters are the same as in the usual EM, except M-step for $\mu_{i k}$;

$$
\begin{align*}
& \hat{\pi}_{i}^{(m+1)}=\sum_{j=1}^{n} \tau_{i j}^{(m)} / n \tag{1}\\
& \hat{\sigma}_{k}^{2,(m+1)}=\sum_{i=1}^{g} \sum_{j=1}^{n} \tau_{i j}^{(m)}\left(x_{j k}-\hat{\mu}_{i k}^{(m)}\right)^{2} / n \tag{2}\\
& \hat{\mu}_{i}^{(m+1)}=\operatorname{sign}\left(\tilde{\mu}_{i}^{(m+1)}\right)\left(\left|\tilde{\mu}_{i}^{(m+1)}\right|-\frac{\lambda}{\sum_{j} \tau_{i j}^{(m)}} V^{(m)} w_{i}\right) \tag{3,}
\end{align*}
$$

where

$$
\begin{align*}
& \tau_{i j}^{(m)}= \begin{cases}\frac{\pi_{i}^{(m)} f_{i}\left(x_{j} ; \theta_{i}^{(m)}\right)}{f\left(x_{j} ; \ominus^{(m)}\right)}, & \text { if } 1 \leq j \leq n_{0} \\
z_{i j}, & \text { if } n_{0}<j \leq n\end{cases} \tag{4}\\
& \tilde{\mu}_{i}^{(m+1)}=\sum_{j=1}^{n} \tau_{i j}^{(m)} x_{j} / \sum_{j=1}^{n} \tau_{i j}^{(m)} \tag{5}
\end{align*}
$$

Model Selection

- To determine g_{0} (and λ), use BIC (Schwartz 1978)

$$
B I C=-2 \log L(\hat{\Theta})+\log (n) d
$$

where $d=g+K+g K-1$ is the total number of unknown parameters in the model; the model with a minimum BIC is selected (Fraley and Raftery 1998).

- For the penalized mixture model, Pan and Shen (2007) proposed a modified BIC:

$$
B I C=-2 \log L(\hat{\Theta})+\log (n) d_{e}
$$

where $d_{e}=g+K+g K-1-q=d-q$ with $q=\#\left\{\hat{\mu}_{i k}: \hat{\mu}_{i k}=0\right\}$, an estimate of the "effective" number of parameters.

Real Data

- 28 LVEC and 25 MVEC samples from Chi et al (2003); cDNA arrays.
- 27 BOEC samples; Affy arrays.
- Combined data: 9289 unique genes in both data.
- Need to minimize systematic bias due to different platforms.
- 6 human umbilical vein endothelial cell (HUVEC) samples from each of the two datasets.
- Jiang studied 64 possible combinations of a three-step normalization procedure and identified the one maximizing the extent of mixing of the 12 HUVEC samples.
- Normalized the data in the same way
- $g_{0}=0$ or $1 ; g_{1}=2$.
- 6 models: 1) 3 methods: standard, penalized with $w=0$, and penalized with $w=1 ; 2$ values of $g_{0}: 0$ or 1 .
- The EM randomly started 20 times with the starting values from the K-means output.
- At convergence, used the posterior probabilities to classify BOEC samples, as well as LVEC and MVEC samples.
- Used 3 sets of the genes in the starting model.
- Using 37 genes best discriminating LVEC and MVEC:

Table: Semi-supervised learning with 37 genes. The BIC values of the six models (from left to right and from top to bottom) were 2600, 2549, 2510, 2618, 2520 and 2467 respectively.

	$g_{0}=0, g_{1}=2$									
	$\lambda=0$				$\lambda=5, w=0$			$\lambda=2, w=1$		
Sample		1	2	2	1		2	1		2
BOEC			26	26	6		21	0		27
LVEC		24		4	25		3	25		3
MVEC			23		3		22	2		23
	$g_{0}=1, g_{1}=2$									
	$\lambda=0$				$\lambda=6, w=0$			$\lambda=3, w=1$		
Sample	1		2	3	1	2	3	1	2	3
BOEC	13		1	13	17	1	9	16	0	11
LVEC	1		24	3	2	24	2	1	25	2
MVEC	0		1	24	2	1	24	0	2	23

Table: Numbers of the 37 features with zero mean estimates.

- Using top 1000 genes discriminating LVEC and MVEC;
- Using top 1000 genes with largest sample variances;
- —-similar results!

TSVM

- Labeled data: $\left(x_{i}, y_{i}\right), i=1, \ldots, n_{l}$; Unlabeled data: $\left(x_{i}\right), i=n_{l}+1, \ldots, n$.
- SVM: consider linear kernel; i.e.

$$
f(x)=\beta_{0}+\beta^{\prime} x
$$

- Estimation in SVM:

$$
\min _{\beta_{0}, \beta} \sum_{i=1}^{n_{1}} L\left(y_{i} f\left(x_{i}\right)\right)+\lambda_{1}\|\beta\|^{2}
$$

- TSVM: aim the same $f(x)=\beta_{0}+\beta^{\prime} x$.
- Estimation in TSVM:

$$
\min _{\left\{y_{n_{l}+1}^{*}, \ldots, y_{n}^{*}\right\}, \beta_{0}, \beta} \sum_{i=1}^{n_{1}} L\left(y_{i} f\left(x_{i}\right)\right)+\lambda_{1}\|\beta\|^{2}+\lambda_{2} \sum_{i=n_{l}+1}^{n} L\left(y_{i}^{*} f\left(x_{i}\right)\right)
$$

- Equivalently (Wang, Shen \& Pan 2007; 2009, JMLR),

$$
\min _{\beta_{0}, \beta} \sum_{i=1}^{n_{1}} L\left(y_{i} f\left(x_{i}\right)\right)+\lambda_{1}\|\beta\|^{2}+\lambda_{2} \sum_{i=n_{l}+1}^{n} L\left(\left|f\left(x_{i}\right)\right|\right)
$$

- Computational algorithms DO matter!
- Active research going on: e.g. with EHRs

Table: Linear learning: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with labeled data alone, TSVM ${ }^{\text {Light, }}$, and TSVM ${ }^{\text {DCA }}$, over 100 pairs of training and testing samples, in the simulated and benchmark examples.

Data	SVM	TSVMLight	TSVM ${ }^{\text {DCA }}$
Example 1	$.345(.0081)$	$.230(.0081)$	$.220(.0103)$
Example 2	$.333(.0129)$	$.222(.0128)$	$.203(.0088)$
WBC	$.053(.0071)$	$.077(.0113)$	$.037(.0024)$
Pima	$.328(.0092)$	$.316(.0121)$	$.314(.0086)$
lonosphere	$.257(.0097)$	$.295(.0085)$	$.197(.0071)$
Mushroom	$.232(.0135)$	$.204(.0113)$	$.206(.0113)$
Email	$.216(.0097)$	$.227(.0120)$	$.196(.0132)$

Table: Nonlinear learning with Gaussian kernel: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with labeled data alone, TSVM ${ }^{\text {Light, }}$, and TSVM ${ }^{\text {DCA }}$, over 100 pairs of training and testing samples, in the simulated and benchmark examples.

Data	SVM	TSVM $^{\text {Light }}$	TSVM ${ }^{\text {DCA }}$
Example 1	$.385(.0099)$	$.267(.0132)$	$.232(.0122)$
Example 2	$.347(.0119)$	$.258(.0157)$	$.205(.0091)$
WBC	$.047(.0038)$	$.037(.0015)$	$.037(.0045)$
Pima	$.353(.0089)$	$.362(.0144)$	$.330(.0107)$
lonosphere	$.232(.0088)$	$.214(.0097)$	$.183(.0103)$
Mushroom	$.217(.0135)$	$.217(.0117)$	$.185(.0080)$
Email	$.226(.0108)$	$.275(.0158)$	$.192(.0110)$

Self-Supervised Learning

- Ref: Chen et al (2020); also called contrastive learning, semi-supervised learning.
- DL: used for pre-training/transfer learning; self-training.
- $f()$: a NN base encoder;
a target NN up to the layer prior/close to output. Representation learning.
- $g()$: A small NN projection head.
e.g. a FFN with 1 hidden layer, $g(h)=W_{2} \sigma\left(W_{1} h\right)$.
- To train a new NN $f+g: f()$ then $g()$.
- Data augmentation: data/image transformations, e.g., random cropping + resizing; rotating; cutting out; color distortions; Gaussian blurring; ...
- $x_{i} \Longrightarrow \tilde{x}_{2 i-1}=t\left(x_{i}\right), \tilde{x}_{2 i}=t^{\prime}\left(x_{i}\right)$.
- $h_{2 i-1}=f\left(\tilde{x}_{2 i-1}\right), h_{2 i}=f\left(\tilde{x}_{2 i}\right)$,

$$
z_{2 i-1}=g\left(h_{2 i-1}\right), z_{2 i}=g\left(h_{2 i}\right)
$$

- Contrastive loss: $s_{i, j}=z_{i}^{\prime} z_{j} /\left\|z_{i}\right\|\left\|z_{j}\right\|$,

$$
L(i, j)=-\log \frac{\exp \left(s_{i, j} / \tau\right)}{\sum_{k=1}^{2 N} I(k \neq i) \exp \left(s_{i, k} / \tau\right)},
$$

- The NN " $f+g$ " is trained with each minibatch by

$$
\min \frac{1}{2 N} \sum_{k=1}^{N}[L(2 k-1,2 k)+L(2 k, 2 k-1)] .
$$

- Take $f()$ and throw away $g()$
- Then train " $f()$ plus output layer(s)" with some labeled data. better than training " $f()$ plus output layer(s)" from scratch. Note: no labels for x_{i} 's!

