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Outline

I Mixture model: a generative model
new: L1 penalization for variable selection;
Pan et al (2006, Bioinformatics)

I Transductive SVM (TSVM):
Wang, Shen & Pan (2007, CM; 2009, JMLR)

I Self-supervised learning: DL
Chen et al (2020)



Introduction

I Biology: Do human blood outgrowth endothelial cells
(BOECs) belong to or are closer to large vessel endothelial
cells (LVECs) or microvascular endothelial cells (MVECs)?

I Why important? BOECs are being explored for efficacy in
endothelial-based gene therapy (Lin et al 2002), and as being
useful for vascular diagnostic purposes (Hebbel et al 2005); in
each case, it is important to know whether BOEC have
characteristics of MVECs or of LVECs.



I Jiang (2005) conducted a genome-wide comparison:
microarray gene expression profiles for BOEC, LVEC and
MVEC samples were clustered; it was found that BOEC
samples tended to cluster together with MVEC samples,
suggesting that BOECs were closer to MVECs.

I Two potential shortcomings:
1. Used hierarchical clustering; ignoring the known classes of

LVEC and MVEC samples;
Alternative? Semi-supervised learning: treating LVEC and
MVEC as known while BOEC unknown (see McLachlan and
Basford 1988; Zhu 2006 for reviews).
Here it requires learning a novel class: BOEC may or may not
belong to LVEC or MVEC.

2. Used only 37 genes that best discriminate b/w LVEC and
MVEC.
Important: result may critically depend on the features or
genes being used; the few genes might not reflect the whole
picture.
Alternative? Start with more genes; but ...
A dilemma: too many genes might lead to covering true
clustering structures; to be shown later.



I For high-dimensional data, necessary to have feature selection,
preferably embedded within the learning framework –
automatic/simultaneous feature selection.

I In contrast to sequential methods: first selecting features and
then fitting/learning a model;
Pre-selection may perform terribly;
Why: selected features may not be relevant at all to
uncovering interesting clustering structures, due to the
separation between the two steps.

I A penalized mixture model: semi-supervised learning;
automatic variable selection simultaneously with model fitting.



Semi-Supervised Learning via Standard Mixture Model

I Data
Given n K -dimensional obs’s: x1,..., xn; the first n0 do not
have class labels while the last n1 have.
There are g = g0 + g1 classes: the first g0 unknown/novel
classes to be discovered. while the last g1 known.
zij = 1 iff xj is known to be in class i ; zij = 0 o/w.
Note: zij ’s are missing for 1 ≤ j ≤ n0.

I The log-likelihood is

log L(Θ) =

n0∑
j=1

log[

g∑
i=1

πi fi (xj ; θi )]+
n∑

j=n0+1

log[

g∑
i=1

zijπi fi (xj ; θi )].

I Common to use the EM to get MLE.



Penalized Mixture Model

I Penalized log-likelihood: use a weighted L1 penalty;

log LP(Θ) = log L(Θ) + λ
∑
i

∑
k

wik |µik |,

where wik ’s are weights to be given later.

I Penalty: model regularization; Bayesian connection.

I Assume that the data have been standardized so that each
feature has sample mean 0 and sample variance 1.

I Hence, for any k, if µ1k = ... = µgk = 0, then feature k will
not be used.

I L1 penalty serves to obtain a sparse solution: µik ’s are
automatically set to 0, realizing variable selection.



I EM algorithm: E-step and M-step for other parameters are
the same as in the usual EM, except M-step for µik ;
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Model Selection

I To determine g0 (and λ), use BIC (Schwartz 1978)

BIC = −2 log L(Θ̂) + log(n)d ,

where d = g + K + gK − 1 is the total number of unknown
parameters in the model; the model with a minimum BIC is
selected (Fraley and Raftery 1998).

I For the penalized mixture model, Pan and Shen (2007)
proposed a modified BIC:

BIC = −2 log L(Θ̂) + log(n)de ,

where de = g + K + gK − 1− q = d − q with
q = #{µ̂ik : µ̂ik = 0}, an estimate of the “effective” number
of parameters.



Real Data

I 28 LVEC and 25 MVEC samples from Chi et al (2003); cDNA
arrays.

I 27 BOEC samples; Affy arrays.

I Combined data: 9289 unique genes in both data.

I Need to minimize systematic bias due to different platforms.

I 6 human umbilical vein endothelial cell (HUVEC) samples
from each of the two datasets.

I Jiang studied 64 possible combinations of a three-step
normalization procedure and identified the one maximizing the
extent of mixing of the 12 HUVEC samples.

I Normalized the data in the same way



I g0 = 0 or 1; g1 = 2.

I 6 models: 1) 3 methods: standard, penalized with w = 0, and
penalized with w = 1; 2 values of g0: 0 or 1.

I The EM randomly started 20 times with the starting values
from the K-means output.

I At convergence, used the posterior probabilities to classify
BOEC samples, as well as LVEC and MVEC samples.

I Used 3 sets of the genes in the starting model.

I Using 37 genes best discriminating LVEC and MVEC:



Table: Semi-supervised learning with 37 genes. The BIC values of the six
models (from left to right and from top to bottom) were 2600, 2549,
2510, 2618, 2520 and 2467 respectively.

g0 = 0, g1 = 2
λ = 0 λ = 5, w = 0 λ = 2, w = 1

Sample 1 2 1 2 1 2

BOEC 1 26 6 21 0 27
LVEC 24 4 25 3 25 3
MVEC 2 23 3 22 2 23

g0 = 1, g1 = 2
λ = 0 λ = 6, w = 0 λ = 3, w = 1

Sample 1 2 3 1 2 3 1 2 3

BOEC 13 1 13 17 1 9 16 0 11
LVEC 1 24 3 2 24 2 1 25 2
MVEC 0 1 24 2 1 24 0 2 23



Table: Numbers of the 37 features with zero mean estimates.

g0 = 0, g1 = 2
λ = 5, w = 0 λ = 2, w = 1

Cluster 1 2 All 1 2 All

#Zeros 11 11 11 14 18 14

g0 = 1, g1 = 2
λ = 6, w = 0 λ = 3, w = 1

Cluster 1 2 3 All 1 2 3 All

#Zeros 21 10 11 5 24 18 20 12



I Using top 1000 genes discriminating LVEC and MVEC;

I Using top 1000 genes with largest sample variances;

I —-similar results!



TSVM

I Labeled data: (xi , yi ), i = 1, ..., nl ;
Unlabeled data: (xi ), i = nl + 1, ..., n.

I SVM: consider linear kernel; i.e.

f (x) = β0 + β′x .

I Estimation in SVM:

min
β0,β

nl∑
i=1

L(yi f (xi )) + λ1||β||2

I TSVM: aim the same f (x) = β0 + β′x .



I Estimation in TSVM:

min
{y∗

nl+1,...,y
∗
n },β0,β

nl∑
i=1

L(yi f (xi )) + λ1||β||2 + λ2

n∑
i=nl+1

L(y∗i f (xi ))

I Equivalently (Wang, Shen & Pan 2007; 2009, JMLR),

min
β0,β

nl∑
i=1

L(yi f (xi )) + λ1||β||2 + λ2

n∑
i=nl+1

L(|f (xi )|)

I Computational algorithms DO matter!

I Active research going on: e.g. with EHRs



Table: Linear learning: Averaged test errors as well as the estimated
standard errors (in parenthesis) of SVM with labeled data alone,
TSVMLight , and TSVMDCA, over 100 pairs of training and testing
samples, in the simulated and benchmark examples.

Data SVM TSVMLight TSVMDCA

Example 1 .345(.0081) .230(.0081) .220(.0103)
Example 2 .333(.0129) .222(.0128) .203(.0088)
WBC .053(.0071) .077(.0113) .037(.0024)
Pima .328(.0092) .316(.0121) .314(.0086)
Ionosphere .257(.0097) .295(.0085) .197(.0071)
Mushroom .232(.0135) .204(.0113) .206(.0113)
Email .216(.0097) .227(.0120) .196(.0132)



Table: Nonlinear learning with Gaussian kernel: Averaged test errors
as well as the estimated standard errors (in parenthesis) of SVM with
labeled data alone, TSVMLight , and TSVMDCA, over 100 pairs of training
and testing samples, in the simulated and benchmark examples.

Data SVM TSVMLight TSVMDCA

Example 1 .385(.0099) .267(.0132) .232(.0122)
Example 2 .347(.0119) .258(.0157) .205(.0091)
WBC .047(.0038) .037(.0015) .037(.0045)
Pima .353(.0089) .362(.0144) .330(.0107)
Ionosphere .232(.0088) .214(.0097) .183(.0103)
Mushroom .217(.0135) .217(.0117) .185(.0080)
Email .226(.0108) .275(.0158) .192(.0110)



Self-Supervised Learning

I Ref: Chen et al (2020);
also called contrastive learning, semi-supervised learning.

I DL: used for pre-training/transfer learning; self-training.

I f (): a NN base encoder;
a target NN up to the layer prior/close to output.
Representation learning.

I g(): A small NN projection head.
e.g. a FFN with 1 hidden layer, g(h) = W2σ(W1h).

I To train a new NN f + g : f () then g().

I Data augmentation: data/image transformations, e.g.,
random cropping + resizing; rotating; cutting out; color
distortions; Gaussian blurring; ...



I xi =⇒ x̃2i−1 = t(xi ), x̃2i = t ′(xi ).

I h2i−1 = f (x̃2i−1), h2i = f (x̃2i ),
z2i−1 = g(h2i−1), z2i = g(h2i )

I Contrastive loss: si ,j = z ′i zj/||zi ||||zj ||,

L(i , j) = − log
exp(si ,j/τ)∑2N

k=1 I (k 6= i) exp(si ,k/τ)
,

I The NN ”f + g” is trained with each minibatch by

min
1

2N

N∑
k=1

[L(2k − 1, 2k) + L(2k, 2k − 1)].

I Take f () and throw away g()

I Then train ”f () plus output layer(s)” with some labeled data.
better than training ”f () plus output layer(s)” from scratch.
Note: no labels for xi ’s!


