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I Methods: standard and new ones
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I Transductive SVM (TSVM):
Wang, Shen & Pan (2007, CM; 2009, JMLR)

I Constrained K-means: Wagstaff et al (2001)



Introduction

I Biology: Do human blood outgrowth endothelial cells
(BOECs) belong to or are closer to large vessel endothelial
cells (LVECs) or microvascular endothelial cells (MVECs)?

I Why important: BOECs are being explored for efficacy in
endothelial-based gene therapy (Lin et al 2002), and as being
useful for vascular diagnostic purposes (Hebbel et al 2005); in
each case, it is important to know whether BOEC have
characteristics of MVECs or of LVECs.

I Based on the expression of gene CD36, it seems reasonable to
characterize BOECs as MVECs (Swerlick et al 1992).

I However, CD36 is expressed in endothelial cells, monocytes,
some epidermal cells and a variety of cell lines;
characterization of BOECs or any other cells using a single
gene marker seems unreliable.



I Jiang (2005) conducted a genome-wide comparison:
microarray gene expression profiles for BOEC, LVEC and
MVEC samples were clustered; it was found that BOEC
samples tended to cluster together with MVEC samples,
suggesting that BOECs were closer to MVECs.

I Two potential shortcomings:
1. Used hierarchical clustering; ignoring the known classes of

LVEC and MVEC samples;
Alternative? Semi-supervised learning: treating LVEC and
MVEC as known while BOEC unknown (see McLachlan and
Basford 1988; Zhu 2006 for reviews).
Here it requires learning a novel class: BOEC may or may not
belong to LVEC or MVEC.

2. Used only 37 genes that best discriminate b/w LVEC and
MVEC.
Important: result may critically depend on the features or
genes being used; the few genes might not reflect the whole
picture.
Alternative? Start with more genes; but ...
A dilemma: too many genes might lead to covering true
clustering structures; to be shown later.



I For high-dimensional data, necessary to have feature selection,
preferably embedded within the learning framework –
automatic/simultaneous feature selection.

I In contrast to sequential methods: first selecting features and
then fitting/learning a model;
Pre-selection may perform terribly;
Why: selected features may not be relevant at all to
uncovering interesting clustering structures, due to the
separation between the two steps.

I We propose a penalized mixture model: semi-supervised
learning; automatic variable selection simultaneously with
model fitting.



I With more genes included in a starting model and with
appropriate gene selection, BOEC samples are separate from
LVEC and MVEC samples.

I Finite mixture models studied in the statistics and machine
learning literature (McLachlan and Peel 2002; Nigam et al
2006), even applied to microarray data analysis (Alexandridis
et al 2004), our proposal of using a penalized likelihood to
realize automatic variable selection is novel; in fact, variable
selection in this context is largely a neglected topic.

I This work extends the penalized unsupervised
learning/clustering analysis method of Pan and Shen (2007)
to semi-supervised learning.



Semi-Supervised Learning via Standard Mixture Model

I Data
Given n K -dimensional obs’s: x1,..., xn; the first n0 do not
have class labels while the last n1 have.
There are g = g0 + g1 classes: the first g0 unknown/novel
classes to be discovered. while the last g1 known.
zij = 1 iff xj is known to be in class i ; zij = 0 o/w.
Note: zij ’s are missing for 1 ≤ j ≤ n0.

I A mixture model as a generative model:

f (x ; Θ) =

g∑
i=1

πi fi (x ; θi )

πi : unknown prior prob’s;
fi : class-specific distribution with unknown parameters θi .



I For high-dim and low-sample-sized data, we propose
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I Assign xj to cluster i0 = argmaxiτij .

I A key observation: if µ1k = µ2k = ... = µgk for some k, the
terms involving xjk will cancel out in τij—-feature selection!



I Note: variable selection is possible under a common diagonal
covariance matrix V across all clusters.
E.g., if use Vi (or a non-diagonal V ), even if
µ1k = µ2k = ... = µgk , xjk is still informative; e.g., N(0, 1) vs
N(0, 2).

I Θ = {(πi , θi ) : i = 1, ..., g} need to be estimated; MLE

I The log-likelihood is

log L(Θ) =

n0∑
j=1

log[

g∑
i=1

πi fi (xj ; θi )]+
n∑

j=n0+1

log[

g∑
i=1

zij fi (xj ; θi )].

I Common to use the EM (Dempster et al 1977) to get MLE;
see below for details.



Penalized Mixture Model

I Penalized log-likelihood: use a weighted L1 penalty;

log LP(Θ) = log L(Θ) + λ
∑

i

∑
k

wik |µik |,

where wik ’s are weights to be given later.

I Penalty: model regularization; Bayesian connection.

I Assume that the data have been standardized so that each
feature has sample mean 0 and sample variance 1.

I Hence, for any k, if µ1k = ... = µgk = 0, then feature k will
not be used.

I L1 penalty serves to obtain a sparse solution: µik ’s are
automatically set to 0, realizing variable selection.



I EM algorithm: E-step and M-step for other parameters are
the same as in the usual EM, except M-step for µik ;
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I Soft-thresholding: If λwik > |
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I In the EM for the standard mixture model, use µ̃
(m+1)
i ; no

shrinkage or thresholding.

I Zou (2005, 2006) proposed using the weighted L1 penalty in
the context of supervised learning; we extend the idea to the
current context: using wij = 1/|µ̃ik |w with w ≥ 0; the
standard L1 penalty corresponds to w = 0.

I The weighted penalty automatically realizes a data-adaptive
penalization: it penalizes more on smaller µik while penalizing
less on, and thus reducing the bias for, larger µik , leading to
better feature selection and classification performance.

I As in Zou (2006), we tried w ∈ {0, 1, 2, 4} and found only
minor differences in results for w > 0; for simplicity we will
present results only for w = 0 and w = 1.



Model Selection

I To determine g0 (and λ), use BIC (Schwartz 1978)

BIC = −2 log L(Θ̂) + log(n)d ,

where d = g + K + gK − 1 is the total number of unknown
parameters in the model; the model with a minimum BIC is
selected (Fraley and Raftery 1998).

I For the penalized mixture model, Pan and Shen (2007)
proposed a modified BIC:

BIC = −2 log L(Θ̂) + log(n)de ,

where de = g + K + gK − 1− q = d − q with
q = #{µ̂ik : µ̂ik = 0}, an estimate of the “effective” number
of parameters.



I The idea was borrowed from Efron et al (2004) and Zou et al
(2004) in penalized regression/LASSO.

I No proof yet...

I Data-based methods, such as cross-validation or data
perturbation (Shen and Ye 2002; Efron 2004), can be also
used; but computationally more demanding.

I Trials and errors to find a λ (and g0).



Simulated Data

I Simulation set-ups:
I Four non-null (i.e. g0 > 0) cases;
I 20 obs’s in each of the g0 = 1 unknown and g1 = 2 known

classes;
I K = 200 independent attributes; only 2K1 were informative;
I Each of the first K1 informative attributes: indep N(0, 1),

N(0, 1) and N(1.5, 1) for 3 classes;
I Each of the next K1 informative ones: indep N(1.5, 1), N(0, 1)

and N(0, 1);
I Each of the K − 2K1 noise variables: N(0, 1);
I K1 = 10, 15, 20 and 30.
I Null case: g0 = 0; only the first K1 = 30 attributes were

discriminatory as before, and others not.



I For each case, 100 independent datasets.

I Comparing standard method without variable selection (i.e.
λ = 0) and penalized method with w = 0.

I For each dataset, the EM was run 10 times; its starting values
were from the output of the K-means with random starts;
final result was the one with the max (penalized) likelihood
(for the given λ).

I λ ∈ Φ = {0, 2, 4, 6, 8, 10, 12, 15, 20, 25}; for a given g0, chose
the one with min BIC.

I Comparison between the standard and penalized methods:



Set-up 1: 2K1 = 20, g0 = 1

Standard Penalized
g0 Freq BIC Freq BIC λ #Zero1 #Zero0

0 100 12029 35 10793 10.3 19.8 180.0
(4) (3) (.1) (.2) (.0)

1 0 12464 65 10779 9.4 0.0 169.4
(5) (6) (.1) (.0) (.8)

Set-up 2: 2K1 = 30, g0 = 1

Standard Penalized
g0 Freq BIC Freq BIC λ #Zero1 #Zero0

0 100 11876 13 10741 9.9 29.9 170.0
1 0 12225 87 10693 8.3 0.0 154.5



Set-up 3: 2K1 = 40, g0 = 1

Standard Penalized
g0 Freq BIC Freq BIC λ #Zero1 #Zero0

0 100 11733 1 10688 9.1 40 160
1 0 11977 99 10590 8.0 0.0 142.9

Set-up 4: 2K1 = 60, g0 = 1

Standard Penalized
g0 Freq BIC Freq BIC λ #Zero1 #Zero0

0 86 11433 0 10567 8.5 - -
1 14 11483 100 10367 6.8 0.0 112.9



Set-up 5: K1 = 30, g0 = 0

Standard Penalized
g0 Freq BIC Freq BIC λ #Zero1 #Zero0

0 100 11583 100 10506 8.1 23.6 170
(5) (5) (.1) (.7) (.0)

1 0 12196 0 10510 8.1 - -
(5) (5) (.1)



I Comparison with pre-variable-selection:
I Use F-statistics to rank the genes;
I Treat unlabeled data as a separate class?

F2: ignore unlabeled data; use only labeled data.
F3: treat unlabeled data as a separate class.

I How many top genes? i.e. K0=?
I Use BIC to select K0?



Table: Frequencies of the selected numbers (g0) of the cluster for
unlabeled data in variable selection from 100 simulated datasets: top K0

genes with the largest F -statistics based on labeled data (F2), or both
labeled and unlabeled data (F3), were used in the standard mixture
model; the last row was for the frequency of g0 values selected when the
best K0 values were determined by BIC; true g0 = 1.

F2 F3

K0 g0 = 0 g0 = 1 g0 = 0 g0 = 1

5 83 1 1 15
15 36 0 0 64
20 20 0 0 80
30 1 0 0 99
40 0 0 0 100
50 0 0 0 100
60 0 0 0 100

K̂0 83 1 1 15



Summary

I No variable selection: tended to select g0 = 0 because of the
presence of many noise variables; correct in some sense!

I Pre-variable selection: tended to select g0 = 0 because the
selected model was indeed correct (based on a subset of
non-informative variables) and most parsimonious, albeit of no
interest!



Real Data

I 28 LVEC and 25 MVEC samples from Chi et al (2003); cDNA
arrays.

I 27 BOEC samples; Affy arrays.

I Combined data: 9289 unique genes in both data.

I Need to minimize systematic bias due to different platforms.

I 6 human umbilical vein endothelial cell (HUVEC) samples
from each of the two datasets.

I Jiang studied 64 possible combinations of a three-step
normalization procedure and identified the one maximizing the
extent of mixing of the 12 HUVEC samples.

I Normalized the data in the same way



I g0 = 0 or 1; g1 = 2.

I 6 models: 1) 3 methods: standard, penalized with w = 0, and
penalized with w = 1; 2 values of g0: 0 or 1.

I The EM randomly started 20 times with the starting values
from the K-means output.

I At convergence, used the posterior probabilities to classify
BOEC samples, as well as LVEC and MVEC samples.

I Used 3 sets of the genes in the starting model.

I Using 37 genes best discriminating LVEC and MVEC:



Table: Semi-supervised learning with 37 genes. The BIC values of the six
models (from left to right and from top to bottom) were 2600, 2549,
2510, 2618, 2520 and 2467 respectively.

g0 = 0, g1 = 2
λ = 0 λ = 5, w = 0 λ = 2, w = 1

Sample 1 2 1 2 1 2

BOEC 1 26 6 21 0 27
LVEC 24 4 25 3 25 3
MVEC 2 23 3 22 2 23

g0 = 1, g1 = 2
λ = 0 λ = 6, w = 0 λ = 3, w = 1

Sample 1 2 3 1 2 3 1 2 3

BOEC 13 1 13 17 1 9 16 0 11
LVEC 1 24 3 2 24 2 1 25 2
MVEC 0 1 24 2 1 24 0 2 23



Table: Numbers of the 37 features with zero mean estimates.

g0 = 0, g1 = 2
λ = 5, w = 0 λ = 2, w = 1

Cluster 1 2 All 1 2 All

#Zeros 11 11 11 14 18 14

g0 = 1, g1 = 2
λ = 6, w = 0 λ = 3, w = 1

Cluster 1 2 3 All 1 2 3 All

#Zeros 21 10 11 5 24 18 20 12



I Using top 1000 genes discriminating LVEC and MVEC;

I Using top 1000 genes with largest sample variances;

I —-similar results!



Discussion

I As expected, results depend on which features are being used.

I For our motivating example, with various larger sets of genes,
the BOEC samples seemed to be different from both LVEC
and MVEC samples, and formed a new class.

I However, the result might owe to different microarray chips
used.

I Our major contribution: use of penalized mixture model for
semi-supervised learning.

I Lesson: As in clustering (Pan adn Shen 2007), variable
selection in semi-supervised learning is both critical and
challenging; either skipping variable selection or pre-selection
may not work well, even though a correct model of no interest
can be identified!



I Comparison to nearest shrunken centroids (NSC) (Tibshirani
et al 2002; 2003)

I Similar: 1. aim to handle high-dimensional (and
low-sample-sized) data; 2. assume a Normal distribution for
each cluster or class; 3. adopt a common diagonal covariance
matrix for all the clusters/classes; for simplicity and for variable
selection; 4. use soft-thresholding to realize variable selection.

I Diff: 1. for supervised and semi-supervised respectively; 2.
penalization: ad hoc in NSC; here in the general and unified
framework of penalized likelihood.

I Here a single Normal distribution for each class; a mixture of
Normals can be also used (Nigam et al 2006).

I Is model-based easier to incorporate the idea of “tight
clustering” (Tseng and Wong 2005)?

I Other extensions in clustering: grouped VS (Xie, Pan & Shen
2008, Biometrics); cluster-specific diagonal cov matrices (Xie,
Pan & Shen 2008, EJS); unconstrained covariance structures
by glasso (Zhou, Pan & Shen 2009, EJS)...



TSVM

I Labeled data: (xi , yi ), i = 1, ..., nl ;
Unlabeled data: (xi ), i = nl + 1, ..., n.

I SVM: consider linear kernel; i.e.

f (x) = β0 + β′x .

I Estimation in SVM:

min
β0,β

nl∑
i=1

L(yi f (xi )) + λ1||β||2

I TSVM: aim the same f (x) = β0 + β′x .



I Estimation in TSVM:

min
{y∗nl +1,...,y

∗
n },β0,β

nl∑
i=1

L(yi f (xi )) + λ1||β||2 + λ2

n∑
i=nl+1

L(y∗i f (xi ))

I Equivalently (Wang, Shen & Pan 2007; 2009, JMLR),

min
β0,β

nl∑
i=1

L(yi f (xi )) + λ1||β||2 + λ2

n∑
i=nl+1

L(|f (xi )|)

I Computational algorithms DO matter!

I Very active research going on...



Table: Linear learning: Averaged test errors as well as the estimated
standard errors (in parenthesis) of SVM with labeled data alone,
TSVMLight , and TSVMDCA, over 100 pairs of training and testing
samples, in the simulated and benchmark examples.

Data SVM TSVMLight TSVMDCA

Example 1 .345(.0081) .230(.0081) .220(.0103)
Example 2 .333(.0129) .222(.0128) .203(.0088)
WBC .053(.0071) .077(.0113) .037(.0024)
Pima .328(.0092) .316(.0121) .314(.0086)
Ionosphere .257(.0097) .295(.0085) .197(.0071)
Mushroom .232(.0135) .204(.0113) .206(.0113)
Email .216(.0097) .227(.0120) .196(.0132)



Table: Nonlinear learning with Gaussian kernel: Averaged test errors
as well as the estimated standard errors (in parenthesis) of SVM with
labeled data alone, TSVMLight , and TSVMDCA, over 100 pairs of training
and testing samples, in the simulated and benchmark examples.

Data SVM TSVMLight TSVMDCA

Example 1 .385(.0099) .267(.0132) .232(.0122)
Example 2 .347(.0119) .258(.0157) .205(.0091)
WBC .047(.0038) .037(.0015) .037(.0045)
Pima .353(.0089) .362(.0144) .330(.0107)
Ionosphere .232(.0088) .214(.0097) .183(.0103)
Mushroom .217(.0135) .217(.0117) .185(.0080)
Email .226(.0108) .275(.0158) .192(.0110)



Constrained K-means

I Ref: Wagstaff et al (2001); COP-k-means

I K-means with two types of constraints:
1. Must-link: two obs’s have to be in the same cluster;
2. Cannot-link: two obs’s cannot be in the same cluster.

I May not be feasible, or even reasonable.
Many modifications.

I Constrained spectral clustering (Liu, Pan & Shen 2013, Front
Genet).


