Chapter 10. Semi-Supervised Learning

Wei Pan

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu

> PubH 7475/8475 ©Wei Pan

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

- Mixture model: L₁ penalization for variable selection Pan et al (2006, Bioinformatics)
 - Introduction: motivating example
 - Methods: standard and new ones
 - Simulation
 - Example
 - Discussion
- Transductive SVM (TSVM): Wang, Shen & Pan (2007, CM; 2009, JMLR)
- Constrained K-means: Wagstaff et al (2001)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

Introduction

- Biology: Do human blood outgrowth endothelial cells (BOECs) belong to or are closer to large vessel endothelial cells (LVECs) or microvascular endothelial cells (MVECs)?
- Why important: BOECs are being explored for efficacy in endothelial-based gene therapy (Lin et al 2002), and as being useful for vascular diagnostic purposes (Hebbel et al 2005); in each case, it is important to know whether BOEC have characteristics of MVECs or of LVECs.
- Based on the expression of gene CD36, it seems reasonable to characterize BOECs as MVECs (Swerlick et al 1992).
- However, CD36 is expressed in endothelial cells, monocytes, some epidermal cells and a variety of cell lines; characterization of BOECs or any other cells using a single gene marker seems unreliable.

- Jiang (2005) conducted a genome-wide comparison: microarray gene expression profiles for BOEC, LVEC and MVEC samples were clustered; it was found that BOEC samples tended to cluster together with MVEC samples, suggesting that BOECs were closer to MVECs.
- Two potential shortcomings:
 - 1. Used hierarchical clustering; ignoring the known classes of LVEC and MVEC samples;

Alternative? Semi-supervised learning: treating LVEC and MVEC as known while BOEC unknown (see McLachlan and Basford 1988; Zhu 2006 for reviews).

Here it requires learning a novel class: BOEC may or may not belong to LVEC or MVEC.

2. Used only 37 genes that best discriminate $\mbox{b/w}$ LVEC and MVEC.

Important: result may critically depend on the features or genes being used; the few genes might not reflect the whole picture.

Alternative? Start with more genes; but ...

A dilemma: too many genes might lead to covering true clustering structures; to be shown later.

- For high-dimensional data, necessary to have feature selection, preferably embedded within the learning framework – automatic/simultaneous feature selection.
- In contrast to sequential methods: first selecting features and then fitting/learning a model;
 Pre-selection may perform terribly;
 Why: selected features may not be relevant at all to
 - uncovering interesting clustering structures, due to the separation between the two steps.
- We propose a penalized mixture model: semi-supervised learning; automatic variable selection simultaneously with model fitting.

- With more genes included in a starting model and with appropriate gene selection, BOEC samples are separate from LVEC and MVEC samples.
- Finite mixture models studied in the statistics and machine learning literature (McLachlan and Peel 2002; Nigam et al 2006), even applied to microarray data analysis (Alexandridis et al 2004), our proposal of using a penalized likelihood to realize automatic variable selection is novel; in fact, variable selection in this context is largely a neglected topic.
- This work extends the penalized unsupervised learning/clustering analysis method of Pan and Shen (2007) to semi-supervised learning.

Semi-Supervised Learning via Standard Mixture Model

Data

Given *n K*-dimensional obs's: $x_1, ..., x_n$; the first n_0 do not have class labels while the last n_1 have. There are $g = g_0 + g_1$ classes: the first g_0 unknown/novel classes to be discovered. while the last g_1 known. $z_{ij} = 1$ iff x_j is **known** to be in class i; $z_{ij} = 0$ o/w. Note: z_{ii} 's are missing for $1 \le j \le n_0$.

A mixture model as a generative model:

$$f(x;\Theta) = \sum_{i=1}^{g} \pi_i f_i(x;\theta_i)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 π_i : unknown prior prob's;

 f_i : class-specific distribution with unknown parameters θ_i .

For high-dim and low-sample-sized data, we propose

$$f_i(x_j; \theta_i) = \frac{1}{(2\pi)^{K/2} |V|^{1/2}} \exp\left(-\frac{1}{2}(x_j - \mu_i)' V^{-1}(x_j - \mu_i)
ight),$$

where $V = diag(\sigma_1^2, \sigma_2^2, ..., \sigma_K^2)$, and $|V| = \prod_{k=1}^K \sigma_k^2$.

Posterior prob of x_j's coming from class/component i:

$$\tau_{ij} = \frac{\pi_i f_i(x_j; \theta_i)}{\sum_{l=1}^{g} \pi_l f_l(x_j; \theta_l)}$$
$$= \frac{\pi_i \prod_{k=1}^{K} \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left(-\frac{(x_{jk}-\mu_{ik})^2}{2\sigma_k^2}\right)}{\sum_{l=1}^{g} \pi_l \prod_{k=1}^{K} \frac{1}{\sqrt{2\pi\sigma_k}} \exp\left(-\frac{(x_{jk}-\mu_{ik})^2}{2\sigma_k^2}\right)},$$

- Assign x_j to cluster $i_0 = \operatorname{argmax}_i \tau_{ij}$.
- A key observation: if μ_{1k} = μ_{2k} = ... = μ_{gk} for some k, the terms involving x_{jk} will cancel out in τ_{ij}—-feature selection!

- Note: variable selection is possible under a common diagonal covariance matrix V across all clusters.
 E.g., if use V_i (or a non-diagonal V), even if μ_{1k} = μ_{2k} = ... = μ_{gk}, x_{jk} is still informative; e.g., N(0,1) vs N(0,2).
- $\Theta = \{(\pi_i, \theta_i) : i = 1, ..., g\}$ need to be estimated; MLE
- The log-likelihood is

$$\log L(\Theta) = \sum_{j=1}^{n_0} \log[\sum_{i=1}^{g} \pi_i f_i(x_j; \theta_i)] + \sum_{j=n_0+1}^{n} \log[\sum_{i=1}^{g} z_{ij} f_i(x_j; \theta_i)].$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Common to use the EM (Dempster et al 1977) to get MLE; see below for details.

Penalized Mixture Model

Penalized log-likelihood: use a weighted L₁ penalty;

$$\log L_P(\Theta) = \log L(\Theta) + \lambda \sum_i \sum_k w_{ik} |\mu_{ik}|,$$

where w_{ik} 's are weights to be given later.

- Penalty: model regularization; Bayesian connection.
- Assume that the data have been standardized so that each feature has sample mean 0 and sample variance 1.
- ▶ Hence, for any k, if µ_{1k} = ... = µ_{gk} = 0, then feature k will not be used.
- L₁ penalty serves to obtain a sparse solution: μ_{ik}'s are automatically set to 0, realizing variable selection.

EM algorithm: E-step and M-step for other parameters are the same as in the usual EM, except M-step for μ_{ik};

$$\hat{\pi}_{i}^{(m+1)} = \sum_{j=1}^{n} \tau_{ij}^{(m)} / n, \qquad (1)$$

$$\hat{\sigma}_{k}^{2,(m+1)} = \sum_{i=1}^{g} \sum_{j=1}^{n} \tau_{ij}^{(m)} (x_{jk} - \hat{\mu}_{ik}^{(m)})^{2} / n, \qquad (2)$$

$$\hat{\mu}_{i}^{(m+1)} = \operatorname{sign}(\tilde{\mu}_{i}^{(m+1)}) \left(|\tilde{\mu}_{i}^{(m+1)}| - \frac{\lambda}{\sum_{j} \tau_{ij}^{(m)}} V^{(m)} w_{i} \right)_{+} (3)$$

where

$$\tau_{ij}^{(m)} = \begin{cases} \frac{\pi_i^{(m)} f_i(x_j; \theta_i^{(m)})}{f(x_j; \Theta^{(m)})}, & \text{if } 1 \le j \le n_0 \\ z_{ij}, & \text{if } n_0 < j \le n \end{cases}$$

$$\tilde{\mu}_i^{(m+1)} = \sum_{j=1}^n \tau_{ij}^{(m)} x_j / \sum_{j=1}^n \tau_{ij}^{(m)}$$
(5)

- ► Soft-thresholding: If $\lambda w_{ik} > |\sum_{j=1}^{n} \tau_{ij}^{(m)} x_{jk} / \sigma_k^{2,(m)}|$, then $\hat{\mu}_{ik}^{(m+1)} = 0$; otherwise, $\hat{\mu}_{ik}^{(m+1)}$ is obtained by shrinking $\tilde{\mu}_{ik}^{(m+1)}$ by an amount $\lambda w_{ik} \sigma_k^{2,(m)} / \sum_{j=1}^{n} \tau_{ij}^{(m)}$.
- In the EM for the standard mixture model, use µ̃^(m+1); no shrinkage or thresholding.
- ➤ Zou (2005, 2006) proposed using the weighted L₁ penalty in the context of supervised learning; we extend the idea to the current context: using w_{ij} = 1/|µ̃_{ik}|^w with w ≥ 0; the standard L₁ penalty corresponds to w = 0.
- The weighted penalty automatically realizes a data-adaptive penalization: it penalizes more on smaller μ_{ik} while penalizing less on, and thus reducing the bias for, larger μ_{ik}, leading to better feature selection and classification performance.
- As in Zou (2006), we tried w ∈ {0,1,2,4} and found only minor differences in results for w > 0; for simplicity we will present results only for w = 0 and w = 1.

Model Selection

• To determine g_0 (and λ), use BIC (Schwartz 1978)

$$BIC = -2 \log L(\hat{\Theta}) + \log(n)d,$$

where d = g + K + gK - 1 is the total number of unknown parameters in the model; the model with a minimum BIC is selected (Fraley and Raftery 1998).

For the penalized mixture model, Pan and Shen (2007) proposed a modified BIC:

$$BIC = -2 \log L(\hat{\Theta}) + \log(n) d_e,$$

where $d_e = g + K + gK - 1 - q = d - q$ with $q = \#\{\hat{\mu}_{ik} : \hat{\mu}_{ik} = 0\}$, an estimate of the "effective" number of parameters.

- The idea was borrowed from Efron et al (2004) and Zou et al (2004) in penalized regression/LASSO.
- No proof yet...
- Data-based methods, such as cross-validation or data perturbation (Shen and Ye 2002; Efron 2004), can be also used; but computationally more demanding.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Trials and errors to find a λ (and g_0).

Simulated Data

Simulation set-ups:

- Four non-null (i.e. $g_0 > 0$) cases;
- ▶ 20 obs's in each of the g₀ = 1 unknown and g₁ = 2 known classes;
- K = 200 independent attributes; only $2K_1$ were informative;
- Each of the first K₁ informative attributes: indep N(0, 1), N(0, 1) and N(1.5, 1) for 3 classes;
- Each of the next K₁ informative ones: indep N(1.5, 1), N(0, 1) and N(0, 1);

- Each of the $K 2K_1$ noise variables: N(0, 1);
- ► *K*₁ = 10, 15, 20 and 30.
- ► Null case: g₀ = 0; only the first K₁ = 30 attributes were discriminatory as before, and others not.

- ► For each case, 100 independent datasets.
- Comparing standard method without variable selection (i.e. $\lambda = 0$) and penalized method with w = 0.
- For each dataset, the EM was run 10 times; its starting values were from the output of the K-means with random starts; final result was the one with the max (penalized) likelihood (for the given λ).
- ► $\lambda \in \Phi = \{0, 2, 4, 6, 8, 10, 12, 15, 20, 25\}$; for a given g_0 , chose the one with min BIC.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Comparison between the standard and penalized methods:

	Set-up 1: $2K_1 = 20$, $g_0 = 1$									
	Standard			Penalized						
g_0	Freq	BIC	Freq	BIC	λ	#Zero1	#Zero0			
0	100	12029	35	10793	10.3	19.8	180.0			
		(4)		(3)	(.1)	(.2)	(.0)			
1	0	12464	65	10779	9.4	0.0	169.4			
		(5)		(6)	(.1)	(.0)	(.8)			
		Set	t-up 2: 2	$2K_1 = 30$), g ₀ =	1				
	Sta	ndard			Penal	ized				
g 0	Freq	BIC	Freq	BIC	λ	#Zero1	#Zero0			
0	100	11876	13	10741	9.9	29.9	170.0			
1	0	12225	87	10693	8.3	0.0	154.5			

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

	Set-up 3: $2K_1 = 40$, $g_0 = 1$						
	Sta	ndard			Pena	lized	
g_0	Freq	BIC	Freq	BIC	λ	#Zero1	#Zero0
0	100	11733	1	10688	9.1	40	160
1	0	11977	99	10590	8.0	0.0	142.9
		Se	t-up 4: 2	$K_1 = 60$, <i>g</i> _0 =	: 1	
	Sta	ndard			Pena	lized	
<i>g</i> 0	Freq	BIC	Freq	BIC	λ	#Zero1	#Zero0
0	86	11433	0	10567	8.5	-	-
1	14	11483	100	10367	6.8	0.0	112.9

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Set-up 5: $K_1 = 30$, $g_0 = 0$										
	Standard			Penalized						
g 0	Freq	BIC	Freq	BIC	λ	#Zero1	#Zero0			
0	100	11583	100	10506	8.1	23.6	170			
		(5)		(5)	(.1)	(.7)	(.0)			
1	0	12196	0	10510	8.1	-	-			
		(5)		(5)	(.1)					

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Comparison with pre-variable-selection:

- Use F-statistics to rank the genes;
- Treat unlabeled data as a separate class?
 F₂: ignore unlabeled data; use only labeled data.
 F₃: treat unlabeled data as a separate class.

- How many top genes? i.e. $K_0 = ?$
- ▶ Use BIC to select K₀?

Table: Frequencies of the selected numbers (g_0) of the cluster for unlabeled data in variable selection from 100 simulated datasets: top K_0 genes with the largest *F*-statistics based on labeled data (F_2) , or both labeled and unlabeled data (F_3) , were used in the standard mixture model; the last row was for the frequency of g_0 values selected when the best K_0 values were determined by BIC; true $g_0 = 1$.

	F	2	F	F ₃			
K_0	$g_0 = 0$	$g_0 = 1$	$g_0 = 0$	$g_0 = 1$			
5	83	1	1	15			
15	36	0	0	64			
20	20	0	0	80			
30	1	0	0	99			
40	0	0	0	100			
50	0	0	0	100			
60	0	0	0	100			
κ ₀	83	1	1	15			

Summary

- No variable selection: tended to select g₀ = 0 because of the presence of many noise variables; correct in some sense!
- Pre-variable selection: tended to select g₀ = 0 because the selected model was indeed correct (based on a subset of non-informative variables) and most parsimonious, albeit of no interest!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Real Data

- 28 LVEC and 25 MVEC samples from Chi et al (2003); cDNA arrays.
- 27 BOEC samples; Affy arrays.
- Combined data: 9289 unique genes in both data.
- Need to minimize systematic bias due to different platforms.
- 6 human umbilical vein endothelial cell (HUVEC) samples from each of the two datasets.
- Jiang studied 64 possible combinations of a three-step normalization procedure and identified the one maximizing the extent of mixing of the 12 HUVEC samples.

Normalized the data in the same way

- $g_0 = 0$ or 1; $g_1 = 2$.
- ▶ 6 models: 1) 3 methods: standard, penalized with w = 0, and penalized with w = 1; 2 values of g₀: 0 or 1.
- The EM randomly started 20 times with the starting values from the K-means output.
- At convergence, used the posterior probabilities to classify BOEC samples, as well as LVEC and MVEC samples.

- Used 3 sets of the genes in the starting model.
- Using 37 genes best discriminating LVEC and MVEC:

Table: Semi-supervised learning with 37 genes. The BIC values of the six models (from left to right and from top to bottom) were 2600, 2549, 2510, 2618, 2520 and 2467 respectively.

		$g_0 = 0, \; g_1 = 2$									
		λ =	= 0		$\lambda =$	= 5,	<i>w</i> =	- 0	$\lambda = 2$	2, w =	= 1
Sampl	e	1	4	2	1			2	1		2
BOEC	2	1	26	ĵ	6			21	0		27
LVEC]	24	4	4	25			3	25		3
MVE	2	2	23	3	3			22	2		23
					g	50 =	= 1, ¿	$g_1 = 2$			
		λ =	= 0)	۱ =	:6, и	' = 0	λ :	= 3, v	$\nu = 1$
Sample	1	-	2	3		1	2	3	1	2	3
BOEC	13	}	1	13	1	.7	1	9	16	0	11
LVEC	1	. 2	24	3		2	24	2	1	25	2
MVEC	0)	1	24		2	1	24	0	2	23

		$g_0 = 0, \ g_1 = 2$							
	$\lambda =$	5, w	⁻ = 0		$\lambda =$	2, w	= 1		
Cluster	1	2	All		1	2	All		
#Zeros	11	11	11		14	18	14		
				$g_0 =$	1, g ₁	_ = 2			
)	$\lambda = 6$, $w = 0$					= 3,	w =	1
Cluster	1	2	3	All	•	1	2	3	All
#Zeros	21	10	11	5		24	18	20	12

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Table: Numbers of the 37 features with zero mean estimates.

Using top 1000 genes discriminating LVEC and MVEC;

- Using top 1000 genes with largest sample variances;
- —-similar results!

Discussion

- As expected, results depend on which features are being used.
- For our motivating example, with various larger sets of genes, the BOEC samples seemed to be different from both LVEC and MVEC samples, and formed a new class.
- However, the result might owe to different microarray chips used.
- Our major contribution: use of penalized mixture model for semi-supervised learning.
- Lesson: As in clustering (Pan adn Shen 2007), variable selection in semi-supervised learning is both critical and challenging; either skipping variable selection or pre-selection may not work well, even though a *correct* model *of no interest* can be identified!

- Comparison to nearest shrunken centroids (NSC) (Tibshirani et al 2002; 2003)
 - Similar: 1. aim to handle high-dimensional (and low-sample-sized) data; 2. assume a Normal distribution for each cluster or class; 3. adopt a common diagonal covariance matrix for all the clusters/classes; for simplicity and for variable selection; 4. use soft-thresholding to realize variable selection.
 - Diff: 1. for supervised and semi-supervised respectively; 2. penalization: ad hoc in NSC; here in the general and unified framework of penalized likelihood.
- Here a single Normal distribution for each class; a mixture of Normals can be also used (Nigam et al 2006).
- Is model-based easier to incorporate the idea of "tight clustering" (Tseng and Wong 2005)?
- Other extensions in clustering: grouped VS (Xie, Pan & Shen 2008, Biometrics); cluster-specific diagonal cov matrices (Xie, Pan & Shen 2008, EJS); unconstrained covariance structures by glasso (Zhou, Pan & Shen 2009, EJS)...

TSVM

- ▶ Labeled data: (x_i, y_i), i = 1, ..., n_l; Unlabeled data: (x_i), i = n_l + 1, ..., n.
- SVM: consider linear kernel; i.e.

$$f(x) = \beta_0 + \beta' x.$$

Estimation in SVM:

$$\min_{\beta_0,\beta}\sum_{i=1}^{n_l}L(y_if(x_i))+\lambda_1||\beta||^2$$

• TSVM: aim the same $f(x) = \beta_0 + \beta' x$.

Estimation in TSVM:

$$\min_{\{y_{n_l+1}^*,\dots,y_n^*\},\beta_0,\beta}\sum_{i=1}^{n_l} L(y_i f(x_i)) + \lambda_1 ||\beta||^2 + \lambda_2 \sum_{i=n_l+1}^n L(y_i^* f(x_i))$$

Equivalently (Wang, Shen & Pan 2007; 2009, JMLR),

$$\min_{\beta_0,\beta} \sum_{i=1}^{n_l} L(y_i f(x_i)) + \lambda_1 ||\beta||^2 + \lambda_2 \sum_{i=n_l+1}^n L(|f(x_i)|)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Computational algorithms DO matter!
- Very active research going on...

Table: Linear learning: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with labeled data alone, TSVM^{Light}, and TSVM^{DCA}, over 100 pairs of training and testing samples, in the simulated and benchmark examples.

Data	SVM	TSVM ^{Light}	TSVM ^{DCA}
Example 1	.345(.0081)	.230(.0081)	.220(.0103)
Example 2	.333(.0129)	.222(.0128)	.203(.0088)
WBC	.053(.0071)	.077(.0113)	.037(.0024)
Pima	.328(.0092)	.316(.0121)	.314(.0086)
lonosphere	.257(.0097)	.295(.0085)	.197(.0071)
Mushroom	.232(.0135)	.204(.0113)	.206(.0113)
Email	.216(.0097)	.227(.0120)	.196(.0132)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Table: Nonlinear learning with Gaussian kernel: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with labeled data alone, TSVM^{Light}, and TSVM^{DCA}, over 100 pairs of training and testing samples, in the simulated and benchmark examples.

Data	SVM	TSVM ^{Light}	TSVM ^{DCA}
Example 1	.385(.0099)	.267(.0132)	.232(.0122)
Example 2	.347(.0119)	.258(.0157)	.205(.0091)
WBC	.047(.0038)	.037(.0015)	.037(.0045)
Pima	.353(.0089)	.362(.0144)	.330(.0107)
lonosphere	.232(.0088)	.214(.0097)	.183(.0103)
Mushroom	.217(.0135)	.217(.0117)	.185(.0080)
Email	.226(.0108)	.275(.0158)	.192(.0110)

Constrained K-means

- Ref: Wagstaff et al (2001); COP-k-means
- K-means with two types of constraints:
 - 1. Must-link: two obs's have to be in the same cluster;
 - 2. Cannot-link: two obs's cannot be in the same cluster.
- May not be feasible, or even reasonable. Many modifications.
- Constrained spectral clustering (Liu, Pan & Shen 2013, Front Genet).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・