Chapter 10. Semi-Supervised Learning

Wei Pan

Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: panxx014@umn.edu

> PubH 7475/8475 ©Wei Pan

> > ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outline

- Mixture model: a generative model new: L₁ penalization for variable selection; Pan et al (2006, Bioinformatics)
- Transductive SVM (TSVM): Wang, Shen & Pan (2007, CM; 2009, JMLR)
- Constrained K-means: Wagstaff et al (2001)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Self-supervised learning: DL Chen et al (2020)

Introduction

- Biology: Do human blood outgrowth endothelial cells (BOECs) belong to or are closer to large vessel endothelial cells (LVECs) or microvascular endothelial cells (MVECs)?
- Why important? BOECs are being explored for efficacy in endothelial-based gene therapy (Lin et al 2002), and as being useful for vascular diagnostic purposes (Hebbel et al 2005); in each case, it is important to know whether BOEC have characteristics of MVECs or of LVECs.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Jiang (2005) conducted a genome-wide comparison: microarray gene expression profiles for BOEC, LVEC and MVEC samples were clustered; it was found that BOEC samples tended to cluster together with MVEC samples, suggesting that BOECs were closer to MVECs.
- Two potential shortcomings:
 - 1. Used hierarchical clustering; ignoring the known classes of LVEC and MVEC samples;

Alternative? Semi-supervised learning: treating LVEC and MVEC as known while BOEC unknown (see McLachlan and Basford 1988; Zhu 2006 for reviews).

Here it requires learning a novel class: BOEC may or may not belong to LVEC or MVEC.

 Used only 37 genes that best discriminate b/w LVEC and MVEC.

Important: result may critically depend on the features or genes being used; the few genes might not reflect the whole picture.

Alternative? Start with more genes; but ...

- For high-dimensional data, necessary to have feature selection, preferably embedded within the learning framework – automatic/simultaneous feature selection.
- In contrast to sequential methods: first selecting features and then fitting/learning a model; Pre-selection may perform terribly; Why: selected features may not be relevant at all to uncovering interesting clustering structures, due to the separation between the two steps.
- A penalized mixture model: semi-supervised learning; automatic variable selection simultaneously with model fitting.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Semi-Supervised Learning via Standard Mixture Model

Data

Given *n K*-dimensional obs's: $x_1, ..., x_n$; the first n_0 do not have class labels while the last n_1 have.

There are $g = g_0 + g_1$ classes: the first g_0 unknown/novel classes to be discovered. while the last g_1 known.

 $z_{ij} = 1$ iff x_j is **known** to be in class i; $z_{ij} = 0$ o/w. Note: z_{ij} 's are missing for $1 \le j \le n_0$.

The log-likelihood is

$$\log L(\Theta) = \sum_{j=1}^{n_0} \log[\sum_{i=1}^g \pi_i f_i(x_j; \theta_i)] + \sum_{j=n_0+1}^n \log[\sum_{i=1}^g z_{ij}\pi_i f_i(x_j; \theta_i)].$$

Common to use the EM to get MLE.

Penalized Mixture Model

Penalized log-likelihood: use a weighted L₁ penalty;

$$\log L_P(\Theta) = \log L(\Theta) + \lambda \sum_i \sum_k w_{ik} |\mu_{ik}|,$$

where w_{ik} 's are weights to be given later.

- Penalty: model regularization; Bayesian connection.
- Assume that the data have been standardized so that each feature has sample mean 0 and sample variance 1.
- Hence, for any k, if $\mu_{1k} = ... = \mu_{gk} = 0$, then feature k will not be used.
- L_1 penalty serves to obtain a sparse solution: μ_{ik} 's are automatically set to 0, realizing variable selection.

EM algorithm: E-step and M-step for other parameters are the same as in the usual EM, except M-step for μ_{ik};

$$\hat{\pi}_{i}^{(m+1)} = \sum_{j=1}^{n} \tau_{ij}^{(m)} / n, \tag{1}$$

$$\hat{\sigma}_{k}^{2,(m+1)} = \sum_{i=1}^{g} \sum_{j=1}^{n} \tau_{ij}^{(m)} (x_{jk} - \hat{\mu}_{ik}^{(m)})^{2} / n,$$
(2)

$$\hat{\mu}_{i}^{(m+1)} = \operatorname{sign}(\tilde{\mu}_{i}^{(m+1)}) \left(|\tilde{\mu}_{i}^{(m+1)}| - \frac{\lambda}{\sum_{j} \tau_{ij}^{(m)}} V^{(m)} w_{i} \right)_{+} (3)$$

where

$$\tau_{ij}^{(m)} = \begin{cases} \frac{\pi_i^{(m)} f_i(x_j; \theta_i^{(m)})}{f(x_j; \Theta^{(m)})}, & \text{if } 1 \le j \le n_0 \\ z_{ij}, & \text{if } n_0 < j \le n \end{cases}$$

$$\tilde{\mu}_i^{(m+1)} = \sum_{j=1}^n \tau_{ij}^{(m)} x_j / \sum_{j=1}^n \tau_{ij}^{(m)}$$
(5)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Model Selection

• To determine g_0 (and λ), use BIC (Schwartz 1978)

$$BIC = -2 \log L(\hat{\Theta}) + \log(n)d,$$

where d = g + K + gK - 1 is the total number of unknown parameters in the model; the model with a minimum BIC is selected (Fraley and Raftery 1998).

For the penalized mixture model, Pan and Shen (2007) proposed a modified BIC:

$$BIC = -2 \log L(\hat{\Theta}) + \log(n) d_e,$$

where $d_e = g + K + gK - 1 - q = d - q$ with $q = \#\{\hat{\mu}_{ik} : \hat{\mu}_{ik} = 0\}$, an estimate of the "effective" number of parameters.

Real Data

- 28 LVEC and 25 MVEC samples from Chi et al (2003); cDNA arrays.
- 27 BOEC samples; Affy arrays.
- Combined data: 9289 unique genes in both data.
- Need to minimize systematic bias due to different platforms.
- 6 human umbilical vein endothelial cell (HUVEC) samples from each of the two datasets.
- Jiang studied 64 possible combinations of a three-step normalization procedure and identified the one maximizing the extent of mixing of the 12 HUVEC samples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Normalized the data in the same way

- $g_0 = 0$ or 1; $g_1 = 2$.
- 6 models: 1) 3 methods: standard, penalized with w = 0, and penalized with w = 1; 2 values of g_0 : 0 or 1.
- The EM randomly started 20 times with the starting values from the K-means output.
- At convergence, used the posterior probabilities to classify BOEC samples, as well as LVEC and MVEC samples.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Used 3 sets of the genes in the starting model.
- Using 37 genes best discriminating LVEC and MVEC:

Table: Semi-supervised learning with 37 genes. The BIC values of the six models (from left to right and from top to bottom) were 2600, 2549, 2510, 2618, 2520 and 2467 respectively.

		$g_0 = 0, \ g_1 = 2$										
	Γ	$\lambda = 0$			$\lambda = 5, w = 0$			λ	$\lambda = 2$, $w = 1$			
Samp	le 1 2		1		2			1		2		
BOEC 1		2	26 6		5	21			0		27	
LVEC	:	24 4		25			3	2	5	3		
MVEC		2	2	23		3		22		2 23		23
		$g_0 = 1, \ g_1 = 2$										
		$\lambda = 0$			$\lambda=$ 6, w $=$ 0				$\lambda=$ 3, w $=$ 1			
Sample	1	L	2	3		1	2	3	_	1	2	3
BOEC	13	3	1	13		17	1	9		16	0	11
LVEC	1	L 2	24	3		2	24	2		1	25	2
MVEC	()	1	24		2	1	24		0	2	23

	$g_0 = 0, \ g_1 = 2$								
	$\lambda = 5, w = 0$				$\lambda=$ 2, w $=$ 1				
Cluster	1	2	All		1	2	All		
#Zeros	11	11	11		14	18	14		
				$g_0 =$	1, g ₁	= 2			
	$\lambda = 6, w = 0$ $\lambda = 3,$						w =	1	
Cluster	1	2	3	All	-	1	2	3	All
#Zeros	21	10	11	5		24	18	20	12

Table: Numbers of the 37 features with zero mean estimates.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Using top 1000 genes discriminating LVEC and MVEC;

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Using top 1000 genes with largest sample variances;
- —-similar results!

TSVM

- Labeled data: (x_i, y_i), i = 1, ..., n_l; Unlabeled data: (x_i), i = n_l + 1, ..., n.
- SVM: consider linear kernel; i.e.

$$f(x) = \beta_0 + \beta' x.$$

Estimation in SVM:

$$\min_{\beta_0,\beta}\sum_{i=1}^{n_l}L(y_if(x_i))+\lambda_1||\beta||^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• TSVM: aim the same $f(x) = \beta_0 + \beta' x$.

Estimation in TSVM:

$$\min_{\{y_{n_l+1}^*,\dots,y_n^*\},\beta_0,\beta}\sum_{i=1}^{n_l} L(y_i f(x_i)) + \lambda_1 ||\beta||^2 + \lambda_2 \sum_{i=n_l+1}^n L(y_i^* f(x_i))$$

Equivalently (Wang, Shen & Pan 2007; 2009, JMLR),

$$\min_{\beta_0,\beta} \sum_{i=1}^{n_l} L(y_i f(x_i)) + \lambda_1 ||\beta||^2 + \lambda_2 \sum_{i=n_l+1}^n L(|f(x_i)|)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Computational algorithms DO matter!
- Very active research going on...

Table: Linear learning: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with labeled data alone, TSVM^{Light}, and TSVM^{DCA}, over 100 pairs of training and testing samples, in the simulated and benchmark examples.

Data	SVM	TSVM ^{Light}	TSVM ^{DCA}
Example 1	.345(.0081)	.230(.0081)	.220(.0103)
Example 2	.333(.0129)	.222(.0128)	.203(.0088)
WBC	.053(.0071)	.077(.0113)	.037(.0024)
Pima	.328(.0092)	.316(.0121)	.314(.0086)
lonosphere	.257(.0097)	.295(.0085)	.197(.0071)
Mushroom	.232(.0135)	.204(.0113)	.206(.0113)
Email	.216(.0097)	.227(.0120)	.196(.0132)

Table: Nonlinear learning with Gaussian kernel: Averaged test errors as well as the estimated standard errors (in parenthesis) of SVM with labeled data alone, TSVM^{Light}, and TSVM^{DCA}, over 100 pairs of training and testing samples, in the simulated and benchmark examples.

Data	SVM	TSVM ^{Light}	TSVM ^{DCA}
Example 1	.385(.0099)	.267(.0132)	.232(.0122)
Example 2	.347(.0119)	.258(.0157)	.205(.0091)
WBC	.047(.0038)	.037(.0015)	.037(.0045)
Pima	.353(.0089)	.362(.0144)	.330(.0107)
lonosphere	.232(.0088)	.214(.0097)	.183(.0103)
Mushroom	.217(.0135)	.217(.0117)	.185(.0080)
Email	.226(.0108)	.275(.0158)	.192(.0110)

Constrained K-means

- Ref: Wagstaff et al (2001); COP-k-means
- View: Unsup+Sup, instead of Sup+unsup.
- K-means with two types of constraints:
 - 1. Must-link: two obs's have to be in the same cluster;
 - 2. Cannot-link: two obs's cannot be in the same cluster.
- May not be feasible, or even reasonable. Many modifications.
- Constrained spectral clustering (Liu, Pan & Shen 2013, Front Genet).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Self-Supervised Learning

- Ref: Chen et al (2020); also called contrastive learning, semi-supervised learning.
- DL: used for pre-training/transfer learning; self-training.
- f(): a NN base encoder,
 a target NN up to the layer prior/close to output.
 Representation learning.
- g(): A small NN projection head.
 e.g. a FFN with 1 hidden layer, g(h) = W₂σ(W₁h).
- To train a new NN f + g: f() then g().
- Data augmentation: data/image transformations, e.g., random cropping + resizing; rotating; cutting out; color distortions; Gaussian blurring; ...

$$L(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} I(k \neq i) \exp(s_{i,k}/\tau)},$$

► The NN "f + g" is trained with each minibatch by

$$\min \frac{1}{2N} \sum_{k=1}^{N} [L(2k-1,2k) + L(2k,2k-1)].$$

► Take *f*() and throw away *g*()

Then train "f() plus output layer(s)" with some labeled data. better than training "f() plus output layer(s)" from scratch. Note: no labels for x_i's!