
Chapter 11. Network Community Detection

Wei Pan

Division of Biostatistics, School of Public Health, University of Minnesota,
Minneapolis, MN 55455

Email: weip@biostat.umn.edu

PubH 7475/8475
c©Wei Pan



Outline

I Introduction

I Spectral clustering

I Hierachical clustering

I Modularity-based methods

I Model-based methods

I Key refs:
1.Newman MEJ
2. Zhao Y, Levina E, Zhu J (2012, Ann Statist 40:2266-2292).
3. Fortunato S (2010, Physics Reports 486:75-174).

I R package igraph: drawing networks, calculating some
network statistics, some community detection algorithms, ...



Introduction

I Given a binary (undirected) network/graph: G = (V ,E ),
V = {1, 2, ..., n}, set of nodes; E , set of edges.
Adjacency matrix A = (Aij): Aij = 1 if there is an edge/link
b/w nodes i and j ; Aij = 0 o/w. (Aii = 0)

I Goal: assign the nodes into K “homogeneous” groups.
often means dense connections within groups, but sparse b/w
groups.

I Why? Figs 1-4 in Fortunato (2010).



Spectral clustering

I Laplacian L = D − A, or ...
D = Diag(D11, ...,Dnn), Dii =

∑
j Aij .

I Intuition:
If a network separates perfectly into K communities, then L
(or A) is block diagonal (after some re-ordering of the
rows/columns).
If not perfectly but nearly, then the eigenvectors of L are
(nearly) linear combinations of the indicator vectors.

I Apply K-means (or ..) to a few (K ) eigenvectors
corresponding to the smallest eigenvalues of L.
(Note: the smallest eigen value is 0, corresponding to
eigenvector 1.)

I Widely used; some theory (e.g consistency).



Modified spectral clustering

I SC may not work well for sparse networks.

I Regularized SC (Qin and Rohe): replace D with Dτ = D + τ I
for a small τ > 0.

I SC with perturbations (Amini, Chen, Bickel, Levina, 2013,
Ann Statist 41: 2097-2122):
regularize A by adding a small positive number on a random
subset of off-diagonals of A.



Hierarchical clustering

I Need to define some similarity or distance b/w nodes.

I Euclidean distance: Ai . = (Ai1,AI2, ...,Ain)
′,

xij = ||Ai . − Aj .||2

I Or, Pearson’s corr,

xij = corr(Ai .,Aj .)

I Then apply a hierarchical clustering.
can be used to re-arrange the rows/columns of A to get a
nearly block-diagonal A.

I Fig 3 in Neuman.

I Fig 2 in Meunier et al (2010).



Algorithms based on edge removal

I Divisive: edges are progressively removed.

I Which edges? ”bottleneck” ones.

I edge betweenness is defined to be the number of shortest
paths between all pairs of all nodes that run through the two
nodes.

I Algorithm (Girvam and Neuman 2002, PNAS):
1) calculate edge betweenness for each remaining edge in a
network;
2) remove the edge with the higest edge betweenness;
3) repeat the above until ...

I A possible stopping critarion: modularity, to be discussed.

I Fig 4 in Neuman.

I Remarks: slow; some modifications, e.g. a Monte Carlo
version in calculating edge betweenness using only a random
subset of all pairs; or use a different criterion.



Modularity-based methods

I Notation:
degree of node i : di = Dii =

∑n
j=1 Aij ,

(twice) total number of edges: m =
∑n

i=1 di ,
Community assignment: C = (C1,C2, ...,Cn); unknown,
Ci ∈ {1, 2, ...,K}: community containing node i .

I Modularity:

Q = Q(C ) =
1

2m

∑
i ,j

(
Aij −

didj

m

)
I (Ci = Cj).

I Intuition: obs’ed - exp’ed

I Goal: Ĉ = arg maxC Q(C )
Assumption: good to maximize Q, but ...

I Key: a combinatorial optimization problem!
seeking exact solution will be too slow =⇒ many approximate
algorithms, such as greedy searches (e.g. genetic algorithms,
simulated annealing), relaxed algorithms, ...



I Very nonparametric?!

I Problems: resolution limit; too many local solutions.
cannot detect small communities; why? an implicit null model.



Model-based methods

I Stochastic block model SBM (Holland et al 1983):
1) a K × K probability matrix P;
2) Aij ∼ Bin(1,PCi ,Cj

) independently.

I Simple; can model dense/weak within-/between-community
edges.
But, treat all nodes/edges in a community equally; cannot
model hub nodes!
Scale-free network: node degree distribution Pr(k) is
heavy-tailed; a power law.

I SBM with K = 1: Erdos-Renyi Random Graph.

I Degree-corrected SBM (DCSBM) (Karrer and Newman 2011):
1) P; each node i has a degree parameter θi (with some
constraints for identifiability);
2) Aij ∼ Bin(1, θiθjPCi ,Cj

) independently



I More notations:
nk(C ) =

∑n
i=1 I (Ci = k), number of nodes in community k;

Okl =
∑n

i ,j=1 Aij I (Ci = k,Cj = l), number of edges b/w
communities k 6= l ;
Okk =

∑n
i ,j=1 Aij I (Ci = k,Cj = k), (twice) number of edges

within community k;
Ok =

∑K
l=1 Okl , sum of node degrees in community k;

m =
∑n

i=1 di , (twice) the number fo edges in the network.

I Objective function: A profile likelihood (profiling out nuisance
parameters P and θ’s based on a Poisson approximation to a
binomial).
Given a likelihood L(C ,P),
a profile likelihood L∗(C ) = maxP L(C ,P) = L(C , P̂(C )).



I SBM:

QSB(C ) =
K∑

k,l=1

(Okl log
Okl

nknl
).

I DCSBM:

QDC (C ) =
K∑

k,l=1

(Okl log
Okl

OkOl
).

I Neuman-Girvan modularity:

QNG (C ) =
1

2m

∑
k

(Okk −
O2

k

m
).

I Remarks: Still a combinatorial optimization problem; better
theoretical properties.

I Numerical examples in Zhao et al (2012).



Other topics

I Summary statistics for networks; e.g. clustering coeficient,...

I Weighted networks; with or without negative weights (e.g.
Pearson’s correlations).

I Overlapping communities.

I Time-varying (dynamic) networks.

I With covariates. How to model covariates?

I Fast (approximate) algorithms; theory.


