Linear Model and Least Squares

Data: \((Y_i, X_i)\), \(X_i = (X_{i1}, \ldots, X_{ip})'\), \(i = 1, \ldots, n\).
\(Y_i\): continuous

LM: \(Y_i = \beta_0 + \sum_{j=1}^{p} X_{ij} \beta_j + \epsilon_i\),
\(\epsilon_i\)'s iid with \(E(\epsilon_i) = 0\) and \(\text{Var}(\epsilon_i) = \sigma^2\).

\(\text{RSS}(\beta) = \sum_{i=1}^{n} (Y_i - \beta_0 - \sum_{j=1}^{p} X_{ij} \beta_j)^2 = ||Y - X\beta||^2_2\).

LSE (OLSE): \(\hat{\beta} = \text{arg min}_\beta \text{RSS}(\beta) = (X'X)^{-1}X'Y\).

Nice properties: Under true model,
\(E(\hat{\beta}) = \beta\),
\(\text{Var}(\hat{\beta}) = \sigma^2 (X'X)^{-1}\),
\(\hat{\beta} \sim N(\beta, \text{Var}(\hat{\beta}))\),
Gauss-Markov Theorem: \(\hat{\beta}\) has min var among all linear unbiased estimates.
Some questions:
\[\hat{\sigma}^2 = \frac{RSS(\hat{\beta})}{(n - p - 1)} \].
Q: what happens if the denominator is \(n \)?
Q: what happens if \(X'X \) is (nearly) singular?

What if \(p \) is large relative to \(n \)?

Variable selection:
forward, backward, stepwise: fast, but may miss good ones;
best-subset: too time consuming.
FIGURE 3.6. Comparison of four subset-selection techniques on a simulated linear regression problem $Y = X^T \beta + \varepsilon$. There are $N = 300$ observations on $p = 31$ standard Gaussian variables, with pairwise correlations all equal to 0.85. For 10 of the variables, the coefficients are drawn at random from a $N(0, 0.4)$ distribution; the rest are zero. The noise
Shrinkage or regularization methods

- Use regularized or penalized RSS:
 \[
 PRSS(\beta) = RSS(\beta) + \lambda J(\beta).
 \]
 \(\lambda\): penalization parameter to be determined;
 (thinking about the p-value threshold in stepwise selection, or
 subset size in best-subset selection.)

- Ridge:
 \[J(\beta) = \sum_{j=1}^{p} \beta_j^2; \text{ prior: } \beta_j \sim N(0, \tau^2).\]
 \[
 \hat{\beta}^R = (X'X + \lambda I)^{-1}X'Y.
 \]

- Properties: biased but small variances,
 \[
 E(\hat{\beta}^R) = (X'X + \lambda I)^{-1}X'X \beta,
 \]
 \[
 \text{Var}(\hat{\beta}^R) = \sigma^2(X'X + \lambda I)^{-1}X'X(X'X + \lambda I)^{-1} \leq \text{Var}(\hat{\beta}),
 \]
 \[
 df(\lambda) = tr[X(X'X + \lambda I)^{-1}X'] \leq df(0) = tr(X(X'X)^{-1}X') =
 tr((X'X)^{-1}X'X) = p.
 \]
Lasso: $J(\beta) = \sum_{j=1}^{p} |\beta_j|$.
Prior: β_j Laplace or DE(0, τ^2);
No closed form for $\hat{\beta}^L$.

Properties: biased but small variances,
$df(\hat{\beta}^L) = \#$ of non-zero $\hat{\beta}_j^L$’s (Zou et al.).

Special case: for $X'X = I$, or simple regression ($p = 1$),
$\hat{\beta}_j^L = ST(\hat{\beta}_j, \lambda) = \text{sign}(\hat{\beta}_j)(|\hat{\beta}_j| - \lambda)_+$,
compared to:
$\hat{\beta}_j^R = \hat{\beta}_j/(1 + \lambda)$,
$\hat{\beta}_j^B = HT(\hat{\beta}_j, M) = \hat{\beta}_j I(\text{rank}(\hat{\beta}_j) \leq M)$.

A key property of Lasso: $\hat{\beta}_j^L = 0$ for large λ, but not $\hat{\beta}_j^R$.
—simultaneous parameter estimation and selection.
Note: for a convex $J(\beta)$ (as for Lasso and Ridge), min PRSS is equivalent to:
\[
\min \text{RSS}(\beta) \quad \text{s.t.} \quad J(\beta) \leq t.
\]
Offer an intuitive explanation on why we can have $\hat{\beta}_j^L = 0$; see Fig 3.11.
Theory: $|\beta_j|$ is singular at 0; Fan and Li (2001).
How to choose λ?
obtain a solution path $\hat{\beta}(\lambda)$, then, as before, use tuning data or CV or model selection criterion (e.g. AIC or BIC).
Example: R code ex3.1.r
FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions $|\beta_1| + |\beta_2| \leq t$ and $\beta_1^2 + \beta_2^2 \leq t^2$, respectively, while the red ellipses are the contours of the least squares error function.
FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as the tuning parameter λ is varied. Coefficients are plotted versus $df(\lambda)$, the effective degrees of freedom. A vertical line is drawn at $df = 5.0$, the value chosen by cross-validation.
FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter \(t \) is varied. Coefficients are plotted versus \(s = t / p \). A vertical line is drawn at \(s = 0 \), the value chosen by cross-validation. Compare Figure 3.8 on page 9; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed.
Lasso: biased estimates; alternatives:

Relaxed lasso: 1) use Lasso for VS; 2) then use LSE or MLE on the selected model.

Use a non-convex penalty:
SCAD: eq (3.82) on p.92;
Bridge $J(\beta) = \sum_j |\beta_j|^q$ with $0 < q < 1$;
Adaptive Lasso (Zou 2006): $J(\beta) = \sum_j |\beta_j|/|\tilde{\beta}_j,0|$;
Truncated Lasso Penalty (Shen, Pan & Zhu 2012, JASA): $J(\beta; \tau) = \sum_j \min(|\beta_j|, \tau)$, or $J(\beta; \tau) = \sum_j \min(|\beta_j|/\tau, 1)$.

Choice b/w Lasso and Ridge: bet on a sparse model? risk prediction for GWAS (Austin, Pan & Shen 2013, SADM).

Elastic net (Zou & Hastie 2005):

$$J(\beta) = \sum_j \alpha |\beta_j| + (1 - \alpha)\beta_j^2$$

may select correlated X_j's.
FIGURE 3.20. The lasso and two alternative non-convex penalties designed to penalize large coefficients less. For SCAD we use $\lambda = 1$ and $a = 4$, and $\nu = \frac{1}{2}$ in the last panel.
Group Lasso: a group of variables are to be 0 (or not) at the same time,
\[J(\beta) = ||\beta||_2, \]
i.e. use \(L_2 \)-norm, not \(L_1 \)-norm for Lasso or squared \(L_2 \)-norm for Ridge.
better in VS (but worse for parameter estimation?)
Grouping/fusion penalties: encouraging equalities b/w \(\beta_j \)'s (or \(|\beta_j| \)'s).
 - Fused Lasso: \(J(\beta) = \sum_{j=1}^{p-1} |\beta_j - \beta_{j+1}| \)
 - Ridge penalty: grouping implicitly, why?
 - (8000) Grouping pursuit (Shen & Huang 2010, JASA):
\[J(\beta; \tau) = \sum_{j=1}^{p-1} TLP(\beta_j - \beta_{j+1}; \tau) \]
Grouping penalties:

1. **(8000) Zhu, Shen & Pan (2013, JASA):**

 \[
 J_2(\beta; \tau) = \sum_{j=1}^{p-1} TLP(|\beta_j| - |\beta_{j+1}|; \tau);
 \]

 \[
 J(\beta; \tau_1, \tau_2) = \sum_{j=1}^{p} TLP(\beta_j; \tau_1) + J_2(\beta; \tau_2);
 \]

2. **(8000) Kim, Pan & Shen (2013, Biometrics):**

 \[
 J'_2(\beta) = \sum_{j \sim k} |I(\beta_j \neq 0) - I(\beta_k \neq 0)|;
 \]

 \[
 J_2(\beta; \tau) = \sum_{j \sim k} |TLP(\beta_j; \tau) - TLP(\beta_k; \tau)|;
 \]

3. **(8000) Dantzig Selector (§3.8).**

4. **(8000) Theory (§3.8.5); Greenshtein & Ritov (2004) (persistence); Zou 2006 (non-consistency) ...**
R packages for penalized GLMs (and Cox PHM)

- glmnet: Ridge, Lasso and Elastic net.
- ncvreg: SCAD, MCP
- TLP: https://github.com/ChongWu-Biostat/glmtlp
 Vignette: http://www.tc.umn.edu/~wuxx0845/glmtlp
- FGSG: grouping/fusion penalties (based on Lasso, TLP, etc) for LMs
- More general convex programming: Matlab CVX package.
Computational Algorithms for Lasso

- Quadratic programming: the original; slow.
- LARS (§3.8): the solution path is piece-wise linear; at a cost of fitting a single LM; not general?
- Incremental Forward Stagewise Regression (§3.8): approx; related to boosting.
- A simple (and general) way: $|\beta_j| = \frac{\beta_j^2}{|\hat{\beta}_j^{(r)}|}$; truncate a current estimate $|\hat{\beta}_j^{(r)}| \approx 0$ at a small ϵ.
- Coordinate-descent algorithm (§3.8.6): update each β_j while fixing others at the current estimates—recall we have a closed-form solution for a single β_j!
- Simple and general but not applicable to grouping penalties.
- ADMM (Boyd et al 2011).
 http://stanford.edu/~boyd/admm.html
Sure Independence Screening (SIS)

- Q: penalized (or stepwise ...) regression can do automatic VS; just do it?
- Key: there is a cost/limit in performance/speed/theory.
- Q2: some methods (e.g. LDA/QDA/RDA) do not have VS, then what?
- Going back to basics: first conduct marginal VS,
 1) $Y \sim X_1$, $Y \sim X_2$, ..., $Y \sim X_p$;
 2) choose a few top ones, say p_1;
 p_1 can be chosen somewhat arbitrarily, or treated as a tuning parameter
 3) then apply penalized reg (or other VS) to the selected p_1 variables.
- Called SIS with theory (Fan & Lv, 2008, JRSS-B).
 R package SIS;
 iterative SIS (ISIS); why? a limitation of SIS ...
Using Derived Input Directions

- PCR: PCA on X, then use the first few PCs as predictors. Use a few top PCs explaining a majority (e.g. 85% or 95%) of total variance;
 ∆ number of components: a tuning parameter; use (genuine) CV;
 Used in genetic association studies, even for $p < n$ to improve power.
 +: simple;
 -: PCs may not be related to Y.
Partial least squares (PLS): multiple versions; see Alg 3.3.
Main idea:
1) regress Y on each X_j univariately to obtain coef est ϕ_{1j};
2) first component is $Z_1 = \sum_j \phi_{1j}X_j$;
3) regress X_j on Z_1 and use the residuals as new X_j;
4) repeat the above process to obtain Z_2, ...;
5) Regress Y on Z_1, Z_2, ...

Choice of # components: tuning data or CV (or AIC/BIC?)

Contrast PCR and PLS:
PCA: $\max_{\alpha} \text{Var}(X_\alpha)$ s.t.;
PLS: $\max_{\alpha} \text{Cov}(Y, X_\alpha)$ s.t. ...;
Continuum regression (Stone & Brooks 1990, JRSS-B)

Penalized PCA (...) and Penalized PLS (Huang et al 2004, BI; Chun & Keles 2012, JRSS-B; R packages ppls, spls).

Example code: ex3.2.r
FIGURE 3.7. Estimated prediction error curves and their standard errors for the various selection and shrinkage methods. Each curve is plotted as a function of the corresponding complexity parameter for that.