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Linear Model and Least Squares

» Data: (Y,',X,'), Xi = (X,'l, ...,X,'p),, i=1,..,n
Y;: continuous
> LM: Y; = Bo + 37, XiBj +ei,
ei's iid with E(¢;) = 0 and Var(¢;) = o2.
> RSS(8) = Srq(Yi — Bo — o0, XiBy)® = |IY — XB|f3.
» LSE (OLSE): 3 = argming RSS(3) = (X'X)"1X'Y.
» Nice properties: Under true model,
E(B) =5,
Var(B) = o2(X'X)1,
BN Var(B),
Gauss-Markov Theorem: (3 has min var among all linear
unbiased estimates.



Some questions:

6% = RSS(B)/(n—p - 1).

Q: what happens if the denominator is n?
Q: what happens if X’X is (nearly) singular?

» What if p is large relative to n?

Variable selection:
forward, backward, stepwise: fast, but may miss good ones;
best-subset: too time consuming.
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FIGURE 3.6. Comparison of four subset-selection
techniques on a simulated linear regression problem
Y = XTB +¢e. There are N = 300 observations
on p = 31 standard Gaussian variables, with pair-
wise correlations all equal to 0.85. For 10 of the vari-
ables, the coefficients are drawn at random from a
N(0.0.4) distribution: the rest are zero. " The noise



Shrinkage or regularization methods

» Use regularized or penalized RSS:
PRSS(3) = RSS(5) + AJ(5).

A: penalization parameter to be determined;
(thinking about the p-value thresold in stepwise selection, or
subset size in best-subset selection.)
J(): prior; both a loose and a Bayesian interpretations; log
prior density.

» Ridge: J(B) = f:l [32; prior: B ~ N(0,72).
AR = (X'X +ANIX'Y.

» Properties: biased but small variances,
E(BR) = (X'X + A)71X'XB,
Var(BR) = a2(X'X + X)X X (X'X + X~ < Var(B),
df(X\) = tr[X(X'X + M)71X'] < df(0) = tr(X(X'X)71X') =
tr(X'X)1X'X) = p,



Lasso: J(8) = X2, |6

Prior: 3; Laplace or DE(O, 72);

No closed form for BL.

Properties: biased but small variances,

df(3") = # of non-zero 3's (Zou et al ).

Special case: for X'X = I, or simple regression (p = 1),
pf = ST(0;, A) = sign(5)(15;] — A)+,

cAompated to:

BE = 5;/(1+),

BJB = HT(8;, M) = B;l(rank(3;) < M).

A key property of Lasso: BJ-L = 0 for large A, but not BJR.
—simultaneous parameter estimation and selection.



Note: for a convex J(3) (as for Lasso and Ridge), min PRSS

is equivalent to:

min RSS(5) s.t. J(B) < t.

Offer an intutive explanation on why we can have BJ-L = 0; see
Fig 3.11.

Theory: |3;] is singular at 0; Fan and Li (2001).

How to choose A7

obtain a solution path 3(\), then, as before, use tuning data

or CV or model selection criterion (e.g. AlC or BIC).

Example: R code ex3.1.r



Elements of Statistical Learning (2nd Ed.) ©Hastie, Tibshirani & Friedman 2009 Chap 3

BZ

=>

FIGURE 3.11. Estimation picture for the lasso (left)
and ridge regression (right). Shown are contours of the
error and constraint functions. The solid blue areas are
the constraint regions |B1| + |B2| < t and 57 + B3 < 2,
respectively, while the red ellipses are the contours of
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» Lasso: biased estimates; alternatives:

Relaxed lasso: 1) use Lasso for VS; 2) then use LSE or MLE
on the selected model.

Use a non-convex penalty:

SCAD: eq (3.82) on p.92;

Bridge J(8) = >_; [5j|7 with 0 < g < 1;

Adaptive Lasso (Zou 2006): J(B) = >_; 18il/1Bi.0l;

Truncated Lasso Penalty (Shen, Pan &Zhu 2012, JASA):
J(B; ) = 22y min(| G, 7). or J(B; ) = >y min(|G/7, 1).
Choice b/w Lasso and Ridge: bet on a sparse model?

risk prediction for GWAS (Austin, Pan & Shen 2013, SADM).

Elastic net (Zou & Hastie 2005):

J(B) = alf|+(1-a)s?

J

may select correlated X;'s.
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FIGURE 3.20. The lasso and two alternative non—
convez penalties designed to penalize large coefficients
less. For SCAD we use A\=1 anda =4, andv = % mn
the last panel.



Group Lasso: a group of variables are to be 0 (or not) at the
same time,

J(B) = 11Bl]2;

i.e. use Ly-norm, not Li-norm for Lasso or squared L;-norm
for Ridge.
better in VS (but worse for parameter estimation?)
Grouping/fusion penalties: encouraging equalities b/w 3;'s (or
1Bj]'s)-

» Fused Lasso: J(3) = Zf;ll 16 — Bt

J(B) = Zj k187 = Brl
» Ridge penalty: grouping implicitly, why?
> (8000) Grouping pursuit (Shen & Huang 2010, JASA):

p—1
J(BiT) =Y TLP(B; — Bj1:7)
j=1



» Grouping penalties:
» (8000) Zhu, Shen & Pan (2013, JASA):

p—1
h(Bi7) = Z TLP(|Bj] = |Bj41]i 7):

j=1

P
J(Bim1,m2) =Y TLP(B;; 1) + Jo(B: 72);

j=1
» (8000) Kim, Pan & Shen (2013, Biometrics):

B(B) =D 1(8; #0) = 1(Be #0)];

Jj~k
7) =Y _|TLP(Bji7) — TLP(Bi; 7)]
ok
> (8000) Dantzig Selector (§3.8).

» (8000) Theory (§3.8.5); Greenshtein & Ritov (2004)
(persistence);
Zou 2006 (non-consistency) ...



R packages for penalized GLMs (and Cox PHM)

» glmnet: Ridge, Lasso and Elastic net.
» ncvreg: SCAD, MCP

» TLP: https://github.com/ChongWu-Biostat/glmtlp
Vignette: http://www.tc.umn.edu/~wuxx0845/glmtlp

» FGSG: grouping/fusion penalties (based on Lasso, TLP, etc)
for LMs

» More general convex programming: Matlab CVX package.


https://github.com/ChongWu-Biostat/glmtlp
http://www.tc.umn.edu/~wuxx0845/glmtlp

(8000) Computational Algorithms for Lasso

v

Quadratic programming: the original; slow.
LARS (§3.8): the solution path is piece-wise linear; at a cost
of fitting a single LM; not general?

Incremental Forward Stagewise Regression (§3.8): approx;
related to boosting.

: : _ 32/18(N).
A simple (and general) way: |G;| = @/W} )|,
truncate a current estimate |ﬁj(r)| ~ 0 at a small e.
Coordinate-descent algorithm (§3.8.6): update each ; while
fixing others at the current estimates—recall we have a

closed-form solution for a single 3;!
simple and general but not applicable to grouping penalties.

ADMM (Boyd et al 2011).
http://stanford.edu/~boyd/admm.html


http://stanford.edu/~boyd/admm.html

Sure Independence Screening (SIS)

» Q: penalized (or stepwise ...) regression can do automatic VS;
just do it?

» Key: there is a cost/limit in performance/speed/theory.

» Q2: some methods (e.g. LDA/QDA/RDA) do not have VS,
then what?

» Going back to basics: first conduct marginal VS,
)Y ~X, Y~ Xo, o, Y~ Xy
2) choose a few top ones, say pi;
p1 can be chosen somewhat arbitrarily, or treated as a tuning
parameter
3) then apply penalized reg (or other VS) to the selected p;
variables.
» Called SIS with theory (Fan & Lv, 2008, JRSS-B).
R package SIS;
iterative SIS (ISIS); why? a limitation of SIS ...



Using Derived Input Directions

» PCR: PCA on X, then use the first few PCs as predictors.
Use a few top PCs explaining a majority (e.g. 85% or 95%) of
total variance;
# of components: a tuning parameter; use (genuine) CV;
Used in genetic association studies, even for p < n to improve
power.
+: simple;
-2 PCs may not be related to Y.



Partial least squares (PLS): multiple versions; see Alg 3.3.
Main idea:

1) regress Y on each X; univariately to obtain coef est ¢y;;
2) first component is Z1 = >, ¢1;X;;

3) regress X; on Z; and use the residuals as new Xj;

4) repeat the above process to obtain Zp, ...;

5) Regress Y on 71, Z, ...

Choice of # components: tuning data or CV (or AIC/BIC?)

» Contrast PCR and PLS:

PCA: max, Var(Xa) s.t. ...;

PLS: max, Cov(Y, Xa) s.t. ...;

Continuum regression (Stone & Brooks 1990, JRSS-B)
Penalized PCA (...) and Penalized PLS (Huang et al 2004,
Bl; Chun & Keles 2012, JRSS-B; R packages ppls, spls).

Example code: ex3.2.r
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FIGURE 3.7. Estimated prediction error curves and
their standard errors for the wvarious selection and



