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Linear Model and Least Squares

» Data: (Y,',X,'), Xi = (X,'l,...,X,'p)/, i=1,..,n
Y;: categorical with K classes; often K = 2.
» LM: defined y, = I(class k),

fil(x) = E(yk|x) = Pr(G = k|x) = Bok + Bix

» Dedcision boundary: fx(x) = fi(x), linear
» Use LSE

> |s it ok to use LM?
Yes, but ...masking

» can be formulated as multivariat/multiple response LM.
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Linear Regression Linear Discriminant Analysis
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FIGURE 4.2. The data come from three classes in
IR? and are easily separated by linear decision bound-
aries. The right plot shows the boundaries found by
linear discriminant analysis. The left plot shows the
boundaries found by linear regression of the indica-
tor response variables. The middle class is completely
masked (never dominates).
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Degree = 1; Error = 0.33 Degree = 2; Error = 0.04

FIGURE 4.3. The effects of masking on linear regres-
sion in IR for a three-class problem. The rug plot at
the base indicates the positions and class membership
of each observation. The three curves in each panel are
the fitted regressions to the three-class indicator vari-
ables; for example, for the blue class, ypiue is 1 for the
blue observations, and 0 for the green and orange. The
fits are linear and quadratic polynomials. Above each
plot is the training error rate. The Bayes error rate is
0.025 for this problem, as is the LDA error rate.



Discriminant Analysis

» optimal Bayes rule: G(x) = arg maxy Pr(k|x).
Priklx) = <250
Tk prior prob Pr(k),
fi: density of x in class k.
> Assume f = N(p, X) = LDA.
» Assume i = N(ug, k) = QDA.
> Assume fy = Zj pj/V(uJ', Zj) = MDA. §12.7
» Estimat fi nonparametrically, e.g. by kernel density estimation
—> KDA.
General, but not working well for large p — “curse of dim.”

> Naive Bayes: assuming independence among the predictors,

fi(x) = T17-1 fig (%).
often work quite well!



LDA

> Assume: x|k ~ N(pux, X).
> log[mkfi(x)] o< log mx + X'T N — 54 X7 e = Sk (%)
G(x) = arg maxy Pr(k|x) = arg max 0x(x),
Linear.
> In practice, estimate
ik = ng/n,
fe = D=k Xi/ Nk,
£ = k1 Ykl — i) (i — )/ (n = K),



LDA

» LDA:

og I;rr((l;’|;<)) = 0k(x) — di(x)

Tk 1 — —
= log o 5 U+ u)'® ke = ) X (ke — )
= Box +x'Bui,

is a linear logistic reg model!
» K =2, code y ==+1, is LM ok?
E(y) = bo + x'b, then LSE
boc X7 (fiz — fin),
but intercept differs.
Explains LM =~ LDA = Logistic reg for K = 27



QDA

> Assume: x|k ~ N(puk, Xi).

1 1 _
Ok(x) = logmic — S log 2| — 5 (x — i) T O = ).

quadratic, or

Pr(k|x)
Pr(I|x)

/ !
log = Lok + X Bk + X B g x.

quadratic logit model.

v

Estimation: similar to LDA ...
QDA: more general and thus better than LDA?
Figs 4.1 and 4.6.

Example code: ex4.1.r

v

v

v
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FIGURE 4.1. The left plot shows some data from
three classes, with linear decision boundaries found
by linear discriminant analysis. The right plot shows
quadratic decision boundaries. These were obtained by
finding linear boundaries in the five-dimensional space
X1, X2, X1 X2, X2, X2, Linear inequalities in this space
are quadratic inequalities in the original space.
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FIGURE 4.6. Two methods for fitting quadratic
boundaries.  The left plot shows the quadratic de-
cision boundaries for the data in Figure 4.1 (ob-
tained wusing LDA in the five-dimensional space
X1, X2, X1X2,X?,X3).  The right plot shows the
quadratic decision boundaries found by QDA. The dif-
ferences are small, as is usually the case.



LDA and QDA: too strong assumptions and thus do not work
well?
e.g. with categorical predictors?

LDA: can be applied to x with high-order terms; Fig 4.6.

STATLOG: evaluations based on 22 real datasets,
LDA: in the top 3 for 7 out of 22;

QDA: in the top 3 for 4 out of 22;

L/QDA: in the top 3 for 11 out of 22.

Dudoit & Speed (JASA, 2001): for high-dim gene expression
data, LDA/QDA performed well.

In fact, a diagonalized LDA or QDA could perform even
better!

DLDA or DQDA: only use the diagonal elements of S or 3.
(8000) Theory: Bickel and Levina (2004).

Why?



DLDA (§18.2)

» DLDA: only use diag(X),

2

P x* V2
Z + 2log 7,
j=1

where x* = (x{, ..., x3)" is a test obs, X; is the within-class
sample mean for predictor j in class k, and sj is the pooled
sample variance for predictor j, both based on a training set.

» Classification rule: C(x*) = arg max, dx(x*).

> It is a naive Bayes rule and a nearest centroid rule.

» Problem: if p too large ... need to do VS!
(8000) Theory: Fan & Fan (2008); DLDA becomes a random

guessing as p — oo unless the signal levels are extremely high



Nearest Shrunken Centroids (§18.2)

» Still use the DLDA rule, but first do VS.

» Define _ _
Xij — X

mk(sj + So)’

dkj =

where X; is the overall mean for predictor j, s0 is a small
constant, e.g. the median of s;'s, mi =1/Nx —1/N, and
Var(x; — %) = mio.
Like a (regularized) t-statistic!

» ST: dll<j = sign(dk;)(|dkj| — A)+, or HT: d,’(j = dijl(|dij| > D),
where the tuning parameter A is chosen by CV.

> new centroids: X;; = X; + mi(sj + s0)dy;, and x;; = X; if
d,’(j = 0; if so for all k, no use of predictor j—why?

» Still use the DLDA rule (with NEW centroids):

P x* —l 2
Z +2 logmk, C(x*)=arg mfx&k(x*).
j=1



» Estimate the class probability:

o eel3()]
PO = K eplbare)]

» A penalized approach; simple and yet often effective, but ...

» Example code: ex4.2.r
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Centroids: Average Expression Centered at Overall Centroid



Regularized Discriminant Analysis

v

A compromise b/w LDA and QDA: use ¥4 (a) in QDA,

(@) = a¥i + (1 —a)s,
where « € [0, 1] to be determined by CV.
» Fig 4.7.
> Similarly (§18.3.1),
Si(a) =aX +(1-a)8?l,
Yi(a) = ax + (1 — a)diag(X),
or, ..., covering DLDA, DQDA, ...
» (8000) A direct approach (Mai et al 2012): no need to
estimate X! how?

A connection b/w LDA and LSE!
So, use penalized LR!
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Regularized Discriminant Analysis on the Vowel Data
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FIGURE 4.7. Test and training errors for the vowel
data, using reqularized discriminant analysis with a se-
ries of values of a € [0,1]. The optimum for the test
data occurs around o = 0.9, close to quadratic discrim-
inant analysis.



Logistic regression

» Binary or multinomial logit model: for k =1,..., K —1,

Pr(k|x) /
| — 7 =
og Pr(KIx) Bo,k + X Bk,
or equivalently,
/
Pr(k|x) = eXP(ﬁo k +X'B1.k)

14+ 35 exp(Box + X' Brk)

Then G(x) = arg max Pr(k|x).

» x can be expanded to include high-order terms.

» Parameter estimation: MLE
Note: approx equivalent to fitting multiple binary logit models
separetely (Begg & Gray, 1984, Biometrika).

» Logistic reg vs L/QDA: the former is more general; the latter
has a stronger assumption and thus possibly more efficient if
...; Logistic reg is quite good.

» Example code: ex4.1.r



Penalized logistic regression (§18.3.2, 18.4)

» Need VS or regularization for a large p.

» Add a penalty term J(/3) to —log L
J(B) can be Lasso, ..., as before.

» Computing algorithms: a Taylor expansion (i.e. quadratic
approx) of log L, then the same as penalized LR.

> R package glmnet: an elastic net penalty.
hence do either Lasso or Ridge (or both).



