
Chapter 6. Ensemble Methods

Wei Pan

Division of Biostatistics, School of Public Health, University of Minnesota,
Minneapolis, MN 55455

Email: panxx014@umn.edu

PubH 7475/8475
©Wei Pan



Introduction

I Have a base learner/algorithm; use multiple versions of it to
form a final classifier (or regression model).
Goal: improve over the base/weaker learner (and others).
Often the base learner is a simple tree (e.g. stump).

I Include Bagging (§8.7), boosting (Chapter 10), random forest
(Chapter 15).
Others: Bayesian model averaging (Chapter 8); Model
averaging and stacking (§8.8); ARM (Yang, JASA), ...



Bagging

I Bootstrap Aggregation (Bagging) (§8.7).

I Training data: D = {(Xi ,Yi )|i = 1, ..., n}.
I A bootstrap sample is a random sample of D with size n and

with replacement.

I Bagging regression:
1) Draw B bootstrap samples D∗1 ,..., D∗B ;
2. Fit a (base) model f ∗b (x) with D∗b for each b = 1, ...,B;

3. The bagging estimate is f̂B(x) =
∑B

b=1 f
∗
b (x)/B.

I If f (x) is linear, then f̂B(x)→ f̂ (x) as B →∞; but not in
general.

I A surprise (Breiman 1996): f̂B(x) can be much better than
f̂ (x), especially so if the base learner is not stable (e.g. tree).



I Classification: same as regression but
1) ĜB(x) = majority of (Ĝ ∗1 (x), ..., Ĝ ∗B(x)); or

2) if f̂ (x) = (π̂1, ..., π̂K )′, then
f̂B(x) =

∑B
b=1 f

∗
b (x)/B, ĜB(x) = arg maxk f̂B(x).

2) may be better than 1);

I Example: Fig 8.9, Fig 8.10.

I Why does bagging work? to reduce the variance of the base
learner.
but not always, while always increases bias! (Buja)
explains why sometimes not the best.
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FIGURE 8.9. Bagging trees on simulated dataset.
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(8000)Bayesian Model Averaging

I §8.8; Hoeting et al (1999; Stat Sci).

I Suppose we have M models Mm, m = 1, ...,M.

I Suppose ξ is parameter of interest: given training data Z ,

Pr(ξ|Z ) =
M∑

m=1

Pr(ξ|Mm,Z )Pr(Mm|Z ),

E (ξ|Z ) =
M∑

m=1

E (ξ|Mm,Z )Pr(Mm|Z ).

I Need to specify models, ..., complex!

Pr(Mm|Z ) ∝ Pr(Mm)Pr(Z |Mm)

= Pr(Mm)

∫
Pr(Z |Mm, θm)Pr(θm|Mm)dθm.



I An approximation:

BIC (Mm) = logPr(Z |Mm, θ̂m(Z ))− log(n)p/2

≈∝ logPr(Mm|Z ).

I hence, use weights ∝ exp[BIC (Mm)].

I Buckland et al (1997, Biometrics): use AIC.

AIC (Mm) = logPr(Z |Mm, θ̂m(Z ))− p

≈ EZ∗ logPr(Z ∗|Mm, θ̂m(Z )).

I ARM (Yang 2001): use sample-splitting (or CV),

logPr(Z ts |Mm, θ̂m(Z tr )).



Stacking
I §8.8; Wolpert (1992, Neural Networks), Breiman (1996, ML).
I f̂ (x) =

∑M
m=1 wm f̂m(x), w = (w1, ...,wM)′.

I Ideally, if P is the distr for (X ,Y ),

ŵ = arg min
w

EP [Y −
M∑

m=1

wm f̂m(X )]2.

I But P is unknown, use its empirical distr:

ŵ = arg min
w

n∑

i=1

[Yi −
M∑

m=1

wm f̂m(Xi )]2.

Good? why? think about best subset selection ...
I Stacking: f̂ −im : fm fitted without (Xi ,Yi ); LOOCV.

ŵ st = arg min
w

n∑

i=1

[Yi −
M∑

m=1

wm f̂
−i
m (Xi )]2.

I How? OLS; but QP if impose ŵ st ≥ 0 and
∑M

m=1 w
st
m = 1.



Adaptive Regression by Mixing

I Yang (2001, JASA).

I f̂ (x) =
∑M

m=1 wm f̂m(x), w = (w1, ...,wM)′.

I Key: how to estimate w?
I ARM:

1. Partition the data into two parts D = D1 ∪ D2;
2. Use D1 to fit the candidate models f̂m(x ; θ̂m(D1));
3. Use D2 to estimate weights: wm ∝

∏
i∈D2

f̂m(Xi ; θ̂m(D1)).

I Note: AIC is asymptotically unbiased for the predictive
log-likelihood, so ARM ≈ ...?



(8000) Other topics

I Model selection vs model mixing (averaging).
Theory: Yang (2003, Statistica Sinica); Shen & Huang (2006;
JASA);
My summary: if easy, use the former; o/w use the latter.
Applications: to testing in genomics and genetics (Newton et
al 2007, Ann Appl Stat; Pan et al 2014, Genetics).

I Generalize model averaging to input-dependent weighting:
wm = wm(x).
Pan et al (2006, Stat Sinica).

I Generalize model selection to “localized model selection”
(Yang 2008, Econometric Theory).

I Model selection: AIC or BIC or CV? LOOCV or k-fold CV?
Zhang & Yang (2015, J Econometrics).



(8000) Model selection criteria (for linear models)

I Ref: Shao J (1997). AN ASYMPTOTIC THEORY FOR
LINEAR MODEL SELECTION. Stat Sinica 7:221-264.
http://www3.stat.sinica.edu.tw/statistica/oldpdf/

a7n21.pdf

I Three classes:
I Class 1: BIC, delete-d CV with d/n→ 1,

Selection consistent if there is a fixed and finite-dim true
model (M0) in the candidate set.
Pr(M̂n = M0)→ 1 as n→∞.

I Class 2: AIC, Cp, GCV, delete-1 CV (i.e. LOOCV),
Loss efficient if not ....
L(M̂n)/L(Mbest)→p 1 as n→∞.

I Class 3: delete-d CV with d/n→ τ ∈ (0, 1) (e.g. 5-fold CV).
Between Classes 1 & 2.

http://www3.stat.sinica.edu.tw/statistica/oldpdf/a7n21.pdf
http://www3.stat.sinica.edu.tw/statistica/oldpdf/a7n21.pdf


Random Forest

I RF (Chapter 15); by Breiman (2001).

I Main idea: similar to bagging,
1) use bootstrap samples to generate many trees;
2) In generating each tree,
i) at each node, rather than using the best splitting variable
among all the predictors, use the best one out of a random
subset of predictors (the size m is a tuning parameter to be
determined by the user; not too sensitive); m ∼ √p.
ii) each tree is grown to the max size; no pruning;



I Why do so?
1) Better base trees improve the performance;
2) The correlations among the base trees decrease the
performance.
Reducing m decreases the correlations (& performance of a
tree).

I Output: Give an OOB estimate of the prediction error.
Some obs’s will not be in some bootstrap samples and can be
treated as test data (for the base trees trained on these
bootstrap samples)!

I Output: Give a measure of the importance of each predictor.
1) use the original data to get an OOB estimate e0;
2) permute the values of xj across obs’s, then use the
permuted data to get an OOB estimate ej ;
3) Importance of xj is defined as ej − e0.

I RF can handle large datasets, and can do clustering!

I Example code: ex6.1.R
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ent boosting, applied to the spam data. For boosting,
5-node trees were used, and the number of trees were
chosen by 10-fold cross-validation (2500 trees). Each
“step” in the figure corresponds to a change in a single
misclassification (in a test set of 1536).
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FIGURE 15.3. Random forests compared to gradient
boosting on the California housing data. The curves
represent mean absolute error on the test data as a
function of the number of trees in the models. Two ran-
dom forests are shown, with m = 2 and m = 6. The
two gradient boosted models use a shrinkage parameter
ν = 0.05 in (10.41), and have interaction depths of 4
and 6. The boosted models outperform random forests.
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Boosting

I Chapter 10.

I AdaBoost: proposed by Freund and Schapire (1997).

I Main idea: see Fig 10.1
1. Fit multiple models using weighted samples;
2. Misclassified obs’s are weighted more and more;
3. Combine the multiple models by weighted majority voting.

I Training data: {(Yi ,Xi )|i = 1, ..., n} and Yi = ±1.
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Alg 10.1 AdaBoost

1. Initialize wi = 1/n for i = 1, ..., n.

2. For m = 1 to M:

2.1 Fit a classifier Gm(x) to the training data with weights wi ’s;

2.2 errm =
∑n

i=1 wi I (Yi 6=Gm(Xi ))∑n
i=1 wi

.

2.3 αm = log[(1− errm)/errm].
2.4 Set wi ← wi exp [αmI (Yi 6= Gm(Xi ))], i = 1, ..., n.

3. Output G (x) = sign
[∑M

m=1 αmGm(x)
]
.



I Example: use stumps (trees with only two terminal nodes) as
the base learner; Xi iid N10(0, I ), Yi = 1 if
||Xi ||22 > χ2

10(0.5) = 9.34 and Yi = −1 o/w.
ntr = 1000 + 1000, nts = 10, 000.
Fig 10.2.

I Puzzles:
1) AdaBoost worked really well! why?
3) no over-fitting? even after training error=0, test error still
goes down.
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Forward Stagewise Additive Modeling

I f (x) =
∑M

m=1 βmbm(x) =
∑M

m=1 βmb(x ; γm).
To estimate each (βm, γm) stagewise (sequentially).

I Algorithm 10.2: FSAM
1) Initialize f0(x) = 0;
2) For m = 1 to M:
2.a) (βm, γm) = arg minβ,γ

∑n
i=1 L(Yi , fm−1(Xi ) + βb(Xi ; γ)).

2.b) Set fm(x) = fm−1(x) + βmb(x ; γm).

I Exponential loss: Y ∈ {−1, 1},

L(Y , f (x)) = exp(−Yf (x)).

I Stat contribution:
Adaboost = FSAM using the exponential loss function!
Why important?



Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 10

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Boosting Iterations

T
ra

in
in

g 
E

rr
or

Misclassification Rate

Exponential Loss

FIGURE 10.3. Simulated data, boosting with stumps:
misclassification error rate on the training set, and av-

erage exponential loss: (1/N)
PN

i=1 exp(−yif(xi)). Af-
ter about 250 iterations, the misclassification error is
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I Why exponential loss?

f ∗(x) = arg min
f (x)

EY |x exp(−Yf (x)) =
1

2
log

Pr(Y = 1|x)

Pr(Y = −1|x)
.

Explain why use sign(f̂ (x)) to do prediction.

I AdaBoost estimates f ∗(x) stagewisely.

I Other loss functions: Fig 10.4
Misclassification: I (sign(f ) = y);
Squared error: (y − f )2;
Binomial deviance: log[1 + exp(−2yf )];
Hinge loss (SVM): (1− yf )I (yf < 1) = (1− yf )+;

I Loss functions for regression: Fig 10.5
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Boosting trees

I Each bm(x ; γ) = T (x ; θ) is a tree.

I Gradient boosting: Alg 10.3.
Also called MART; in R package gbm; weka:
http://www.cs.waikato.ac.nz/ml/weka/index.html

I Can perform better than AdaBoost; Fig 10.9

I And, more flexible: can be extended to K > 2 classes,
regression...
Q: Is it possible to apply a binary classifier to a K -class
problem with K > 2?

I Regularization/shrinkage: Fig 10.11
fm(x) = fm−1(x) + γT (x ; θ) with 0 < γ ≤ 1.

I Relative importance of predictors: Fig 10.6
how often used in the trees as a splitting var and how much it
improves fitting/prediction.

I Example code: ex6.2.R

http://www.cs.waikato.ac.nz/ml/weka/index.html
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Boosting vs Forward Stagewise Reg

I Forward stagewise univar linear reg ≈ Lasso; Alg 3.4, p.86

I “Boosting as a regularized ... classifier.” (Rosset et al 2004).
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More on RF, ...

I Ref: Fernandez-Delgado et al. (2014). Do we Need Hundreds of

Classifiers to Solve Real World Classification Problems? JMLR 15:

3133-3181.

https://jmlr.org/papers/volume15/delgado14a/

delgado14a.pdf

I Evaluated 179 classifiers over 121 data sets in the whole UCI
database.

I RF is the winner!

I Top ones: RF, SVM, neural networks and boosting.

https://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://jmlr.org/papers/volume15/delgado14a/delgado14a.pdf


More on RF, ...

I A fun Q: is it possible to improve prediction of RF by adding
some independent noise variables as predictors?

I A:

I Why? recall Breiman’s two points for RF ...
RF =

∑B
b=1 f̂b(x)/B.

var
(
X1+X2

2

)
= var(X1)+var(X2)+2cov(X1,X2)

4 = σ2+σ2corr(X1,X2)
2 .

=⇒ ...

I ”Randomization as regularization”.
mtry is like λ in penalized reg.
=⇒ ...

I Ref: Mentch & Zhou (2020).
https://arxiv.org/pdf/2003.03629v2.pdf

https://arxiv.org/pdf/2003.03629v2.pdf


(8000) Uncertainty?

I RF (and Bagging): giving f̂ (x); a CI of f (x)? SE( f̂ (x))?
Jackknife or subsampling/U-statistics (Wager et al 2014, JMLR;

Mentch & Hooker 2016, JMLR).

I CIs and SEs of variable importance in RF (Ishiwaran & Lu
2019, Stat Med).

I BART: Bayesian Additive Regression Trees (Chipman et al
2010, AOAS). Bayesian boosting.
Giving f̂ (x) and a ”CI” of f (x).
R package: BayesTree

I BART-BMA: (Hernandez et al 2017, Stat Comp)
”a bridge b/w BART and RF”, ”for high-dim data”.
R package: bartBMA

I Applications: causal inference
RF: Wager and Athey (2018). Estimation and Inference of

Heterogeneous Treatment Effects using Random Forests. JASA.



(8000) Causal inf on trt effects: counterfactural RF

I Lu et al (2018). Estimating Individual Treatment Effect in
Observational Data Using Random Forest Methods. JCGS.

I Data: D = {(X1,T1,Y1), . . . , (Xn,Tn,Yn)}. Ti = 0 or 1.
Goal: any trt effects?

I individual treatment effect (ITE): τ(x) := E [Y (1)|X =
x ]− E [Y (0)|X = x ] = E [Y |T = 1,X = x ]− E [Y |T = 0,X = x ]
under the assumption of strongly ignorable treatment assignment
(SITA).

I average treatment effect (ATE): τ0 := E [Y (1)− Y (0)] = E [τ(X )].
Note: E [Ȳ (T = 1)− Ȳ (T = 0)] 6= τ0 in general; why?

I C-RF: build two RFs, f̂1(X ) and f̂0(X ), using the subsamples of
Ti = 1 and Ti = 0 respectively; then for each Xi = x ∈ D, run

τ̂(x) = f̂1(x)− f̂0(x).

better to use the OOB estimate...

I Or, τ̂(x) = RF (x , 1)− RF (x , 0), where RF (X ,T ) ...but...

I If Y = Xβ + Tα + XṪγ + ε holds, then ... but ...



(8000) Causal inference (on trt effects)

I Dorie et al (2019). Automated versus Do-It-Yourself Methods for

Causal Inference: Lessons Learned from a Data Analysis

Competition. Stat Sci.

I Simulated data; no hidden confounders,..., as for PS.
traditional: PS or mean response modeled by GLMs;
how about ML?

I Five competition winners:
I BART;
I Superlearner + Targeted MLE: ensemble of glm, gbm, gam,

glmnet and splines;
I calCause: RF or GP by CV;
I h2o.ai: ensemble of glm, RF, DL (NN), LASSO and ridge reg;
I GBM + MDIA.


