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Introduction

» SVM: §4.5.2, 12.1-12.3; by Vapnik (1996).

» Training data: (Y;,X;), Y;==1,i=1,...n.

> Fig 4.14: with two separable classes, many possible separating
hyperplanes, e.g. ,
LSE (or LDA): 1 error;
Perceptron: diff starting values;
SVC: max the “separation” b/w two classes; Fig 4.16.
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FIGURE 4.14. A toy example with two classes sep-
arable by a hyperplane. The orange line is the least
squares solution, which misclassifies one of the train-
ing points. Also shown are two blue separating hyper-
planes found by the perceptron learning algorithm with
different random starts.
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FIGURE 4.16. The same data as in Figure 4.14.
The shaded region delineates the mazximum margin sep-
arating the two classes. There are three support points
indicated, which lie on the boundary of the margin, and
the optimal separating hyperplane (blue line) bisects the
slab. Included in the figure is the boundary found using
logistic regression (red line), which is very close to the
optimal separating hyperplane (see Section 12.3.3).



Review

» Hyperplane L: f(x) = 8o+ 8'x = 0.

> 1) Any x1, xo € L= '(xy — x2) = 0.
BLL;
B* = B/||B||, vector normal to L.

> 2) Xp € L:>,30+,8/X0:0.

» 3) The signed distance of any x to L is:
B7(x — x0) = (8'x — B'50)/118I| = (8'x + Bo)/ 1Al
= f(x)/||B|| = signed dist of x to L
and f(x) o signed dist of x to L.

LA
o

/ Bo+ BTz =0
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FIGURE 4.15. The linear algebra of a hyperplane
(affine set).



Case I:

>

>

two classes are separable

WLOG, assume ||3]| =1 in f(x) = Bo + f'x.

Classifier: G(x) = sign(f(x)).

Since the two claases are separable,

1) Exists a f(x) = 8o + 8'x = 0 s.t. Yif(X;) > 0 for all i;
2) Exists a f(x) = fo + 8'x = 0 s.t. the margin is maximized,;
Fig 12.1.

Optimization problem

maxsy,5,)|)|1=1 M

sit. Yi(Bo+B'X))>Mfori=1,..,n.

Q: what is By + ' X;?

Or, maxg, g M

s.t. Yi(Bo+ B/ X)/|B]| > M fori=1,..,n.

Set ||8]| = 1/M, then

ming,,5 ||8]] or ming, g 5|51
st. Yi(Bo+p'X;)>1fori=1,.. n.
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2B+ Bo =0

FIGURE 12.1. Support vector classifiers. The left
panel shows the separable case. The decision boundary
is the solid line, while broken lines bound the shaded
mazimal margin of width 2M = 2/||8||. The right panel
shows the nonseparable (overlap) case. The points la-
beled & are on the wrong side of their margin by an
amount §; = ME;; points on the correct side have
& = 0. The margin is mazimized subject to a total
budget Y & < constant. Hence & is the total dis-
tance of points on the wrong side of their margin.



Convex programming: a quadratic obj with linear inequality
constraints.

Rewritten as a Lagrange function, ...

B is defined by some support points/vectors X;'s.

Fig 4.16: 3 SVs

Remarks: 1) SVC: a large margin leads to better

separation /prediction on test data!?

2) Robustness: 3y and /3 determined only by SVs, but ...



Case Il: non-separable

P Introduce some new variable £'s:
maxgy.g,)161=1 M
st. Yi(Bo + 8'X;) > M(1 &)
and §; >0and X7 ;& < B
fori=1,...,n,

> Rewrite
ming, 5 316> + C X7 &
st. & >0and Yi(Bo+ 5'X) >1—¢& Vi,
where C is the "cost”, a tuning parameter.
Fig 12.2

> . similar results as before (e.g. convex programming, SVs)
(8000): Computing §12.2.1.
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Traning Ener 026 . .
Boyes Enor._021 o

C=0.01

FIGURE 12.2. The lincar support vector bound-
ary for the mizture data ezample with two overlapping



SVM

SVC: linear in the input space.

Basis expansion: use h(X;) = (h1(X;), ..., hm(X0))';

f(x) = Bo + B'h(x).

“Kernel trick”: it turns out no need to "first transform then
fit"; just use some kernel function K(.,.):

K(x,z) =< h(x), h(z) >.

Three popular choices:

0) Linear: K(x,z) =< x,z >= x'z.

1) dth degree polynomial: K(x,z) = (1 +~v < x,z >)7.

2) radial basis: K(x,z) = exp(—||x — z||?).

3) neural network/sigmoid: K(x,z) = tanh(y < x,z > +c).
Logistic: /(x) = 1+e—x'

Hyperbolic tangent: tanh(x) = H? =2/(x) —

Kernel: influences the performance; Fig 12.3.

How to choose a kernel (and its parameters)? 1) prior; 2)
tuning.
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SVM - Degree-4 Polynomial in Feature Space

Training Exror: 0.180
TestEror. 0245
Bayes Eror: 0210

SVM - Radial Kernel in Feature Space

Training Exror: 0.160
TestEror. 0218
Bayes Enor: 0210

FIGURE 12.3. Two nonlinear SVMs for the miz-
ture data. The upper plot uses a 4th degree polynomial



SVM as a penalization method

» SVM f(x) = Bo + 5’ h(x) is obtained from
ming,,s >_i_q (1= Yif (X)), + AllBI1%.
why?
» Marvelous!
1) Explain why SVM is robust to high-dim data!
2) Explain what SVM is doing:
» Hinge loss L(Y, (X)) = (1 - Yif(X)),
*(X) = argming EL(Y,f(X)) =1if Pr(Y =1|X) > 1/2;
=—1o/w.
SVM estimates the decision boundary directly!
Need some effort to estimate the probabilities (Wang et al
2008, B'ka).

» AND 3) generalizations: ...



» Generalizations: use other loss or penalty functions, e.g. for
K > 2 classes and for regression (SVR).

>

>

Fig 12.5: use binomial deviance; can directly estimate

P(Y =1|X).

Extending to K > 2 classes (Wang et al 2007, JASA); rather
than using "all pari-wise comparisons” with a binary SVM.
SVR: V (r) = max(|r] —€,0) = (|r| — €)+; or Huber's; Fig
12.8.

Use the Lasso and others for VS (Wang et al 2007, JASA).
May even use even a better loss function (Shen et al 2003,
JASA).

> Example code: ex8.1.R
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LR - Degree-4 Polynomial in Feature Space

Training Exror: 0.190
TestEror 0263 "\
Bayes Eror: 0210 - o

LR - Radial Kernel in Feature Space

Training Exror: 0.150 .,
TestEror. 0221
Bayes Enor: 0210

FIGURE 12.5. The logistic regression versions of the
SVM models in Figure 12.8, using the identical kernels
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FIGURE 12.8. The left panel shows the e-insensitive
error function used by the support vector regression ma-
chine. The right panel shows the error function used in
Huber’s robust regression (blue curve). Beyond |c|, the
function changes from quadratic to linear.



(8000): Computing §12.2.1, 12.3.1

>

Recall that for SVC f(x) = 8o + 8'x,

ming, s.¢ 3168117 + C X0, &

s.t. £ >0 and Y,(ﬁo + ﬁ/Xi) >1-¢& Vi

The Lagrangian (primal):

Lp = 31|BIP + C3y & = S aul Yilfo + 5/X:) — (1~
&) — doiq miki, where C, o's, pi's and &'s are all > 0.
Set the derivatives wrt 3, Sy and &; to be 0, we have the
Lagrangian (dual):

Lp =31 ai— 30y Yoy aiepr Vi Yo < Xi, Xin > .
The solution satisfies: 3 = Y& YiXi.

Now, with a new SVM f(x) = o + ' h(x),

Lp =37 q i — 3 iy Yoy i Vi Yir < h(xi), h(xir) > .
The solution:

F(x) = Bo+ B'h(x) = Bo + h(x) Yi_y & Yih(X;) =
,30 + 27:1 oY < h(X), h(X,') .



