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Introduction

> Given: X,' = (X,']_, ...,X,'p)l, i = ]_, ., n.
» Goal: Cluster or group together those X;'s that are “similar”

to each other;
Or, predict X;'s class Y; with no training info on Y''s.

» Unsupervised learning, class discovery,...

> Ref: 1. textbook, Chapter 14;
2. A.D. Gordon (1999), Classification, Chapman&Hall/CRC;
3. A. Kaufman & P. Rousseeuw (1990). Finding groups in
data: An introduction to cluster analysis, Wiley;
4. G. McLachlan, D. Peel (2000). Finite Mixture Models,
Wiley;
5. Many many papers...



» Define a metric of distance (or similarity):

d(X:, Xj) ZWkdk ik> Xik)

» X quantitative: dx can be Euclidean distance, absolute
distance, Pearson correlation, etc.

> X ordinal: possibly coded as (i —1/2)/M (or simply as i?)
for i = 1,..., M; then treated as quantitative.

> X categorical: specify L; , = dik(/, m) based on
subject-matter knowledge; 0-1 loss is commonly used.

> wy =1 for all k commonly used, but it may not treat each
variable (or attribute) equally!
standardize each variable to have var=1, but see Fig 14.5.

» Distance > similarity, e.g. sim=1—d.
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FIGURE 14.5. Simulated data: on the left, K-means
clustering (with K =2) has been applied to the raw data.
The two colors indicate the cluster memberships. On
the right, the features were first standardized before
clustering. This is equivalent to using feature weights
1/[2 - var(X;)]. The standardization has obscured the
two well-separated groups. Note that each plot uses the
same units in the horizontal and vertical azes.



Hierachical Clustering

» A dendrogram (an upside-down tree):
Leaves represent observations X;'s; each subtree represents a
group/cluster, and the height of the subtree represents the
degree of dissimilarity within the group.

> Fig 14.12
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FIGURE 14.12. Dendrogram from agglomerative hi-

erarchical clustering with average linkage to the human

tumor microarray data.




Bottom-up (agglomerative) algorithm

given: a set of observations {Xi, ..., Xj}.
for i :==1 to n do

i :={X;} /* each obs is initially a cluster */

C:={a,..,cn}
ji=n+1
while |C| > 1

(cay cp) := argmax(c, c,)sim(cy, ¢,)
/* find most similar pair */
¢j = csUcp /* combine to generate a new cluster*/
C:=[C—{ca}]Ug
ji=j+1



» Similarity of two clusters
Similarity of two clusters can be defined in three ways:
» single link: similarity of two most similar members
sim(Cl, C2) = max,-echje@sim(Y;, YJ)
» complete link: similarity of two least similar members
sim(Ci, G2) = miniec, jec,sim(Yi, Y;)
> average link: average similarity b/w two members
sim(Cl, Cz) = ave,-echjeqsim(Yh YJ)

» R: hclust()
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FIGURE 14.13. Dendrograms from agglomerative hi-

erarchical clustering of human tumor microarray data.
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FIGURE 14.14. DNA microarray data: average link-
age hierarchical clustering has been applied indepen-
dently to the rows (genes) and columns (samples), de-

termining the ordering of the rows and columns (see
Y R T s o) R




Combinatorial Algorithms
» No probability model; group observations to min/max a
criterion
» Clustering: find a mapping C: {1,2,....n} — {1,...,K},
K <n

» A criterion

K
W)=Y 4(X;, X)
c=1 C(i)=c C(j)=c
> 221 124j= 1d(Xan): W(C) + B(C),
1 K
BO)=2) 4%, X;)

» Min B(C) < Max W(C)
» Algorithms: search all possible C to find Co = argminc W(C)



» Only feasible for small n and K: # of possible C's

YK=KC(K, k)k™

Mx

k:

E.g. S(10,4) = 34105, S(19,4) ~ 10%0.

> Alternatives: iterative greedy search!



K-means Clustering
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Each observation is a point in a p-dim space
Suppose we know/want to have K clusters

First, (randomly) decide K cluster centers, M

Then, iterate the two steps:

P assignment of each obs i to a cluster
C(i) = argming||X; — My]|?;

» a new cluster center is the mean of obs’s in each cluster
Mk = Avec(,-):kX,-.

Euclidean distance d() is used

May stop at a local minimum for W(C); multiple tries
R: kmeans()

+: simple and intuitive

-: Euclidean distance = 1) sensitive to outliers; 2) if X is
categorical then ?

Assumptions: really assumption-free?
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Initial Centroids. Initial Partition

Iteration Number 20

FIGURE 14.6. Successive iterations of the K-means
clustering algorithm for the simulated data of Fig-
ure 14.4.



K-medoids Clustering

| 2
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Similar to K-means; rather than using the mean of a cluster
to represent the cluster, use an observation within it!

why?

First, (randomly) start with a C

Find My = X,': with

i = argming;.c(iy=k} Z d(xi, x;);
Cl)=k

Update C: C(i) = argminid(X;, My).

Repeat the above 2 steps until convergence

R: package cluster, containing pam() for partitioning around
medoids, clara() for large datasets with pam, silhouette() for
calculating silhouette widths, diana() for divisive hierarchical
clustering, etc.

Both K-means and K-medoids: not a probabilistic method,;
“hard”, not “soft”, grouping = An alternative:
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FIGURE 14.7. (Left panels:) two Gaussian densities
go(z) and g1(z) (blue and orange) on the real line, and
a single data point (green dot) at x = 0.5. The col-
ored squares are plotted at x = —1.0 and x = 1.0, the
means of each density. (Right panels:) the relative den-
sities go(2)/(g0(x) + 1 (x)) and g1 (2)/ (g0 () + 1 (2)),
called the “responsibilities” of each cluster, for this data
point. In the top panels, the Gaussian standard devia-
tion o = 1.0; in the bottom panels o = 0.2. The EM
algorithm uses these responsibilities to make a “soft”
assignment of each data point to each of the two clus-
ters. When o is fairly large, the responsibilities can
be near 0.5 (they are 0.36 and 0.64 in the top right
panel). As o — 0, the responsibilities — 1, for the
cluster center closest to the target point, and 0 for all

other clusters. This “hard” assignment is seen_in the
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Mixture Model-based Clustering

» Can use mixture of Poissons or binomials if needed
(McLachlan & Peel 2000).

» Assume each X; is from a mixture of Normal distributions
with pdf

fX CDK Zwk¢x Uk;vk)
k=1

where ¢(x; pk, Vi) is the pdf of N(pg, Vi).
» Each component k is a cluster with a prior prob 7y,
K
» For a fixed K, use the EM to estimate ® (to obtain MLE).



» Try various values of K = 1,2, ..., then use AIC/BIC to select
the one with the first local (or global?) minimum.

log L(®k) = Zlogf Xi; k)
i=1

AIC = —2log L(Pk) + 2k
BIC = —2log L(®) + vk log(n)

where vk is #para. in Pgk.
» Or, test Hy: K = kg vs Ha: K = kg + 1; use bootstrap
(McLachlan)



EM algorithm

Given: a set of observations { X1, ..., X, }.
Init r =1; w(o), ,u( ) s and V,Eo)'s
While (not converged) do
Foralli=1,...,nand r=1,2,... do
(1 _ =eXn V")
KT T R(Xe0)
/* Tk is posterior prob X; in component k */
m =S/
+ n
luir ):ZI 1 kl X/EI 1 kl

G D D A C T A G T
k - n (K
i=1 " ki

ri=r+1
At end, each X; is assigned to the component
C(i) = arg maxy 7.



EM algorithm: derivation

» Z; = I(X; from component k).
» Complete data log-likelihood

n K

log Le =Y 0> Zii log[mied(Xi; s Vio)].

i=1 k=1

> E-step:

n K
Q(¢|¢(r)) = EZ|X7¢(r) Iog LC = Z Z TlE/r) Iog[ﬂ'kd)(X;; Mk, Vk)]
i=1 k=1

> M-step:
o) — arg max Q(d[d()).

» Repeat the E- and M-steps with r := r + 1 until convergence.



Non-convex: many local solutions; use good starting values
and/or multi-tries.

+: a cluster is a set of obs's from a Normal distribution—clear
def; can model Vj and thus shape/size/orientation of clusters;
probablistic

—: why Normal?

(try nonparametric clustering; find modes; see Li et al 2007.)
Slow

Requires cluster size >= dim of X; if no restriction on V), —
have to do variable selection or dim reduction if p is large

K-means: a special case of Normal mixture model-based
clustering by assuming all Vi = o2/ (and all 7, = 1/K).
R: package mclust



Implementation in mclust

Table: Table 1 in Fraley et al (2012) http:
//www.stat.washington.edu/research/reports/2012/tr597.pdf:
Parameterizations of the covariance matrix Vi currently available in
mclust for hierarchical clustering (HC) and/or EM for multidimensional
data. (Y indicates availability.)

A = diag(1, ax, ..., app) is diagonal with 1 > a» > ... > ap, > 0.

identifier Model HC EM Distribution Volume Shape Orientation
E Y Y (univariate) equal

\% Y Y (univariate) variable

Ell Al Y Y Spherical equal equal NA

Vil Al Y Y Spherical variable equal NA

EEI AA Y Diagonal equal equal coordinate axes
VEI AKA Y Diagonal variable equal coordinate axes
EVI Ak Y Diagonal equal variable coordinate axes
WVI Ak Y Diagonal variable variable coordinate axes
EEE ADADT Y Y Ellipsoidal equal equal equal

EEV ADkAD,Z Y Ellipsoidal equal equal variable
VEV Ak DkAD,Z Y Ellipsoidal variable equal variable
VVV A Dy Ay D[ Y Y Ellipsoidal variable variable variable



http://www.stat.washington.edu/research/reports/2012/tr597.pdf
http://www.stat.washington.edu/research/reports/2012/tr597.pdf

Spectral clustering

» Given: a graph G = (V, E) with nodes V and edges E.
1) each obs is a node;
2) binary edges w;; € {0,1}, or weighted ones (w;; > 0);
3) with the usual data, need to construct a graph (e.g. v
nearest neighbors, or a complete graph) based on their
similarities, e.g., W = (wj;) with
wijj = k(X,',)(j) = exp(—||X,- — )<J'H2/20'2) and Wi = 0.
—-a kernel method!
» Goal: to partition the nodes into K groups.
can be used in network community detection.
» Unnormalized graph Laplacian: L, =D — W,
D = diag(dy, ..., dn) with node degrees d; = >, wy;
W = (wj;) is the weight/adjacency matrix; w;; = 0 Vi.
» Normalized graph Laplacian: L, =1/—D71W,
or, Ly =1 — D7Y2WD=1/2,

> Several variants: based on each Laplacian.



Spectral clustering algorithm (Ng et al)

>

>

>

Find the m eigenvectors U,xm, corresponding to the m
smallest eigenvalues of L;

(Optional?) Form matrix N = (N;;) with

Ny = Us/ (37, UDY?3;

Treating each row of N as an observation (corresponding to
the original obs) and apply the K-means.

Why? (8000) von Luxburg.

Fig 14.29.

Remark: the choice of the kernel (e.g. o2 in the radial basis
kernel) and v-NN to form a graph very important!

Remark: related to the (normalized) min cut algorithm
(Zhang & Jordan 2008).

R: function specc() in package kernlab.

Other functions for kernel methods, e.g. kkmeans() for kernel
k-means.
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FIGURE 14.29. Toy example illustrating spectral
clustering. Data in top left are 450 points falling in
three concentric clusters of 150 points each. The points
are uniformly distributed in angle, with radius 1,2.8
and 5 in the three groups, and Gaussian noise with

standard deviation 0.25 added to each point. Using a
1. - 1 1L




(8000) Some properties of the Laplacian matrices (von
Luxburg)

» Proposition. For any vector f = (fi, ..., f,)’, we have
FLuf = 5 Yo wy (i = )%
f

2
/ _ 1 L i

» Remark: smoothing over a network; related to graph kernels
(e.g. diffusion kernel).

» Proposition. The multiplicity k of the eigenvalue 0 of all L,
L, and L equals to the number of connected components
A1,...,Ak in the graph. For both L, and L,, the eigenspace of
eigenvalue 0 is spanned by the indicator vectors 14, ...,14, of
those components. For Lg, the eigenspace of eigenvalue 0 is
spanned by the indicator vectors D1/21A1, o D1/21Ak of those
components.

> Remark: theoretical foundation of spectral clustering.



(8000) Other Methods

» Hierarchical clustering: divisive (top-down) algorithm (p.
526);

» Self-Organizing Maps: a constrained version of K-means
(section 14.4).

» PRclust (Pan et al 2013): formulated as penalized regression.
R package prclust (Wu 2016, JMLR, 17(188), 1-25).
Each X; with its own centroid/mean p;;
Cluster: shrink some p;'s to be exactly the same;
Objective function:

n

D (X = wi)* + XY TLP(||pi = pll2i7)-

i=1 i<j



(8000) Other Methods: Kernel K-means

> Motivation: since K-means finds linear boundaries between
clusters, in the presence of non-linear boundaries it may be
better to work on non-linearly mapped h(X;)'s (in a possibly
higher dim space).

» The (naive) algorithm is the same as the K-means (except
replacing X; by h(X;)).

» Kernel trick: as before, no need to specify h(.) but a kernel
k(x,z) =< h(x), h(z) >.

> Key: a center Mc =3 ;. h(X;)/|C],
[1h(X;) — Mc||* = ,
k(Xi, Xi) =23 e k(X0 X)/1CL+ 220 k(X X1) /| CT=.

» Remark: related to spectral clustering; K = L*. (Zhang &
Jordan)

» R: kkmeans() in package kernlab.



Other Methods: PCA

» PCA: dim reduction; why here?

» Population structure in human genetics: each person has a
vector of 100,000s of SNPs (=0, 1 or 2) as Xj; X; can reflect
population/racial /ethnic group differences—-a possible
confounder. Apply PCA (Zhang, Guan & Pan, 2013, Genet
Epi): next two figures.

» Clustering?!

> See also Novembre et al (2008, Nature) “Genes mirror
geography within Europe”.
http:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/

» Other uses: PCA can be used to obtain good starting values
for K-means (Xu et al 2015, Pattern Recognition Letter, 54,
50-55); K-means can be used to approx SVD for large
datasets (...7).

» R: prcomp(), svd(), ...


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/

all variants all CVs

kY n"yﬂu“s‘

m E | E L} 1l n m

all LEVs

R e | ] a L] 1 ] L




all variants all CVs

all LEVs all RVs

/




Other Methods: (8000) PCA ~ K-means

» Conclusion: “principal components are the continuous
solutions to the discrete cluster membership indicators to
K-means clustering.” (Ding & He 2004)

» Data: X = (X1, X2, ..., Xp); WLOG assume X1 = 0.

» Review of PCA and SVD:

Covariance V = XX' =37, d,%ukuf(,

Gram (kernel) matrix X'X = >} _; d?v vy,

SVD X = 22:1 dkukv,’( = UDV’, |d1| > |d2| > .2 |dr’ >0,
vu=1, Vv'v=l.

Principal directions: wuy's; Principal components: v's

» Eckart and Young (1936) Theorem: for any 0 < r; <r,
>Ry dilik v = argminanyv)=p [|1X = Y|[Z.

» Denote C = (Cy, ..., Ck) with each column C; € RP as a
centroid; H = (H, ..., H,) with each column H; € {0, 1},
Hij = 1(X; € Cx) and 1’H; = 1 V) (or, H'H = I after
normalized).

» K-means: mincy W = ||X — CH||% s.t. H ...



Other Two Matrix Factorization Methods:

» Non-negative Matrix Factorization (NMF): given X > 0
(elementwise).
minc y || X — CH||2 s.t. C >0, H> 0.
1) Clustering property (as PCA for K-means);
2) A "sum of parts” interpretation.
R package: NMF.
Ref: https://en.wikipedia.org/wiki/Non-negative_
matrix_factorization

» Recommendation systems:
R package: recosystem, recommenderlab, ...
Ref:
https://developers.google.com/machine-learning/
recommendation/collaborative/matrix


https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
https://developers.google.com/machine-learning/recommendation/collaborative/matrix
https://developers.google.com/machine-learning/recommendation/collaborative/matrix

(a) Original frames (b) Low-rank L () Sparse § (d) Low-rank L (e) Sparse s

Convex optimization (this work) Alternating minimization [47]

Figure 3: Background modeling from video. Three frames from a 250 frame sequence taken in
a lobby, with varying illumination [32]. (a) Original video M. (b)-(c) Low-rank L and sparse §
obtained by PCP. (d)-(e) Low-rank and sparse components obtained by a competing approach
based on alternating minimization of an m-estimator [47]. Again, convex programming yields
a more appealing result despite using less prior information.

Figure: Fig 3, Candes, Li, Ma and Wright 2009.



(8000) Robust PCA

>
| 2

Ref: Candes et al 2009.

SVD: given an n x p data matrix X,
minimize || X — L||2

subject to rank(L) < k.

PCA: given an n x n data cov matrix X,
minimize || X — L||2

subject to rank(L) < k.

rPCA:

minimize ||L||« + A||S]|1

subject to L+ S = X.

where ||L||. = ). 0i(L) is the nuclear norm with ¢;(L) as the
ith eigen-value of L.

rPCA2: Shen et al 2011. http:
//www.caam.rice.edu/~zhang/reports/tr1102.pdf
minimize ||[X — L||; s.t. L= UV

with U and V as n x k and k x n (and thus rank(UV) = k.


http://www.caam.rice.edu/~zhang/reports/tr1102.pdf
http://www.caam.rice.edu/~zhang/reports/tr1102.pdf

(8000) Other Methods:

» Variable selection (VS) for high-dim data:
model-based clustering: add an Ly (or other) penalty on p;'s
(Pan & Shen 2007); ...
k-means: Sun, Wang & Fang (2012, EJS, 6, 148-167); ...
sparse PCA (or SDA): add a penalty term in SVD (Shen &
Huang 2008, JMA), or ...

» Consensus clustering (Monti et al 2003, ML, 91-118):
unstability of clustering; analog of Bagging.
R: ConsensusClusterPlus (Wilkerson & Hayes 2010).



Practical Issues

> How to select the number of clusters?
Why is it difficult? see Fig 14.8.
Stability or significance of clusters.
» Any clusters?
> A global test: parametric bootstrap (McShane et al, 2002,
Bioinformatics, 18(11):1462-9).



Practical Issues

» Any clusters?

» Hpy: a Normal distr (or a uniform or ...7).

» (optional) Principal component analysis (PCA): use first 3
PC's for each obs; PC’s are orthogonal

» Under Hp, simulate data Y,b from a MVN;
component-wise mean/var same as that of the data's PC's

» For each obs Y;, i) d; is the distance from Y; to its closest
neighbor; ii) similarly for d® using Y\?) b=1, ..., B.

> Gy is the empirical distr func (EDF) of d;'s; Gp is the EDF of
d®s

> Test stat: ux = [[Gk(y) — G(y)]?dy for k =0,1,..., B, and
G=>,Gy/B.

> P=#{b:up> up}/B

» Available in BRB ArrayTools:
http://linus.nci.nih.gov./BRB-ArrayTools.html

» Significance of clusters: Liu et al (JASA, 2012); R package
sigclust. See also R package pvclust.


http://linus.nci.nih.gov./BRB-ArrayTools.html
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FIGURE 14.8. Total within-cluster sum of squares
for K-means clustering applied to the human tumor mi-
croarray data.



Reproducibility

» Use of the bootstrap
Ref: Zhang & Zhao (FIG, 2000); Kerr & Churchill (PNAS,
2001); ...
P Reproducibility indices
» Ref: McShane et al (2002, Bioinformatics, 18:1462-9)

» Robustness (R) index and Discrepancy (D) index
» Again, use the parametric bootstrap:

» R package clusterv



Y;'s: original obs's

Y = v+ e), where €l iid N(0, ), and
vo = median(v's),

vi = var(Yi, ..., Yik)

Cluster {Yj(b) :j=1,..,K} foreach b=1,...,B

Find the best-matched clusters from {Yj(b)} and {Yj},
(b)

For each paired clusters, r,” =proprotion of pairs of obs’s in
both clusters (i.e kth clusters)

R is an average of r,Eb)'s

D is an avarege of proportions of pairs of obs's not in the
same cluster

Note: Finding best-matched clusters may not be easy.



Determine # of clusters: PS

P In general, a tough problem; many many methods

» Ref: Tibshirani & Walther (2005), “Clustering validation by
prediction strength”. JCGS, 14, 511-528.
many ref's therein;
R: prediction.strength() in package fpc

» Clustering and classification

> Main idea: suppose we have a training dataset and a test
dataset; comparing the agreement b/w the two clustering
results; k = ko will give the best agreement

1) Cluster the test data into k clusters;

2) Cluster the training data into k clusters;

3) Measure how well the training set cluster centers predict
c-membership in the test set.

> Fig1l



v

Define “prediction strength”:

1
= i —_— E ry s il = 1
pS(k) 12I2k nkj(nkj - 1) i£i' €A I(D[C(Xt k) Xte] )
1#1 kj

where Ay;: test obseravtions in test cluster j, and nyj = |A;l;
D[C(.,.), X] is a matrix with ii'th element D[C(.,.), X];» =1
if obs’s i and i fall into the same cluster in C, and =0 o/w.
Choice of k: largest k such that ps(k) > psp.

pso: 0.8-0.9

ps(l) =1

Fig 2 therein

In practice, use repeated 2-fold (or 5-fold) cross-validation.
See also Wang (2010, Biometrika, 97, 893-904) by CV;

Fang & Wang (2012, CSDA, 56, 468-477): nselectboot() in R
package fpc.



Other criteria

> R: package fpc

» Let B(k) and W(k) be the between- and within-cluster sum
of squares

» Calinski & Harabasz (1974):

B(k)/(k —1)

k= argmaka

note: CH(1) not defined.
» Hartigan (1975):

W(k)/W(k+1)—1

H(k) = n—k-—1

k: smallest k > 1 such that H(k) < 10.



» Krzanowski & Lai (1985):

k = argmax;

DIFF (k)
DIFF(k + 1) '

where DIFF (k) = (k — 1)*PWj_1 — k?/PW, p is the dim of
an obs.

» Gap stat (Tibshirani et al, JRSS-B, 2001)
R: clusGap() in package cluster.

» Use of bagging: Dudoit & Fridlyand (Genome Biology, 2002)
more ref's



Gap stat

» Motivation: as k increases, W, ...?

» Gap(k) = E*[log(Wk)] — log(Wk), where E* is expectation
under a reference distribution (e.g. uniform).

» Algorithm:
Step 1. Cluster the observed data and obtain W, k =1, ..., kmax.

Step 2. Generate B reference data sets (e.g. using the uniform distr),
and obtain W?), b=1,...,B and k =1, ..., kpax.

Compute the gap stat: Gap(k) = log(W), — log(W). where
log(W), = 3=, log(W,”)/B.
Step 3. Compute SD: sdy = Zb[log(W,Eb)) — log(W),]?/B. and

define s, = sdx+/1+ 1/B.

Step 4. Choose a smallest k such that
Gap(k) > Gap(k + 1) — sk41

> Fig 14.11
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FIGURE 14.11. (Left panel): observed (green) and
expected (blue) values of log Wi for the simulated data
of Figure 14.4. Both curves have been translated to
equal zero at one cluster. (Right panel): Gap curve,
equal to the difference between the observed and ez-
pected values of logWx. The Gap estimate K* is the
smallest K producing a gap within one standard devi-
ation of the gap at K + 1; here K* = 2.



Assessing clustering results

» Define a; = average dissimilarity between obs i and all other
obs’s of the cluster to which obs i belong;

» For all other clusters A, d(i, A) = average dissimilarity of obs
i to all obs’s of cluster A;

» bj = minad(i, A)

» Silhouette width: s; = —2i—2

max(aj,bi)

> a large s; = obs i is well clustered; a small s; (close to 0)
= obs i lies between two clusters; a negative s; = obs i is
probably in a wrong cluster.



Measuring clustering agreement

» Q: how to measure the agreement between two clustering
results, C; vs (57
note: #s of clusters in the two may be different!

» Rand (1971, JASA) index: for n obs's,

a = # of obs pairs in the same cluster in both C; and G;
b = # of obs pairs in different clusters in both C; and in C;
R=(a+ b)/C(n,?2).

» Adjusted RI: removing the agreement due to random chance.
HA (Hubert and Arabie, 1985, J Classification), MA (Morey
and Agresti's)

» Other ones: Fowlkes and Mallows (1983, JASA) index;
Jaccard index, ....

» For more, see Wagner & Wagner (2007). “Comparing
clusterings—An Overview" .
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.164.6189&rep=repl&type=pdf

P> R package clues.


http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.6189&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.164.6189&rep=rep1&type=pdf

Big Data

» Kurasova et al (2014) “Strategies for Big Data Clustering” .
http://ieeexplore.ieee.org/xpl/articleDetails.
jsp7arnumber=6984551

» Littau D, Borey D (2009). Clustering Very Large Datasets
using a Low Memory Matrix Factored Representation.
Computational Intelligence, 25: 114-135.
http://onlinelibrary.wiley.com/doi/10.1111/j.
1467-8640.2009.00331.x/full

» Main idea: data X, cluster centers Cpy; p,n >> k.
X~ CZ;

Zixn estimated by LS.
Save space: n X p >> p X k+ k x n.


http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6984551
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6984551
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.2009.00331.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8640.2009.00331.x/full

