Cluster Analysis: Unsupervised Learning via Supervised Learning with a Non-convex Penalty

Wei Pan

¹Division of Biostatistics, School of Public Health University of Minnesota

Australian Statistical Conference, Sydney, July 2014

Joint work with Xiaotong Shen and Binghui Liu.

Outline

- Problem
- New methods: Pan, Shen and Liu (2013, *JMLR*) Shen, Pan and Zhu (2012, *JASA*): TLP
- Numerical Results: simulated and real data
- Summary

Clustering Analysis

- Given data $X = (x'_1, ..., x'_n)'$ with $x_i = (x_{i1}, x_{i2}, ..., x_{ip})'$, find centroids μ_i for each x_i ;
 Clustering: many μ_i 's are equal!
- Most algorithms specify a few μ_i 's, then try to estimate them. K-means, (Gaussian) mixture models, ...
- Here, we specify $n \mu_i$'s, over-parametrized! Main idea: group μ_i 's by penalization!

New Methods

• A general framework: like regression,

$$\hat{\mu} = \arg\min_{\mu} \frac{1}{2} \sum_{i=1}^{n} L(x_i - \mu_i) + \lambda \sum_{i < j} h(\mu_i - \mu_j),$$

where L() is a loss, h() is a grouping or fusion penalty.

• LS- L_1 (or Lasso) (Tibshirani 1996):

$$\frac{1}{2} \sum_{i=1}^{n} ||x_i - \mu_i||_2^2 + \lambda \sum_{i < j} ||\mu_i - \mu_j||_1,$$

where $||.||_q$ is the L_q -norm.

• Ours: TLP (Shen et al 2012) is defined as

$$TLP(\alpha; \tau) = min(|\alpha|, \tau),$$

where τ is a tuning parameter.

• A key property:

$$TLP(\alpha; \tau)/\tau \to L_0(\alpha) = I(\alpha \neq 0)$$

Figure 1: TLP.

• Ours: a group TLP (gTLP) penalty

$$gTLP(\mu_i - \mu_j; \tau) = TLP(||\mu_i - \mu_j||_2; \tau).$$

better than L_q -norm for $q \geq 1$.

• Summary: Lasso- and gTLP-based **PRclust**:

$$\hat{\mu} = \arg\min_{\mu} \frac{1}{2} \sum_{i=1}^{n} ||x_i - \mu_i||_2^2 + \lambda \sum_{i < j} ||\mu_i - \mu_j||_1, \tag{1}$$

$$\hat{\mu} = \arg\min_{\mu} \frac{1}{2} \sum_{i=1}^{n} ||x_i - \mu_i||_2^2 + \lambda \sum_{i < j} \text{TLP}(||\mu_i - \mu_j||_2; \tau / 2)$$

A cluster: x_i 's with equal $\hat{\mu}_i$.

- Computing: Not separable, no coordinate-descent algorithm!
- Alternative: quadratic penalty method via reparametrization

 $\theta_{ij} = \mu_i - \mu_j$ for $1 \le i < j \le n$; new objective functions:

$$S_L(\mu, \theta) = \frac{1}{2} \sum_{i=1}^n ||x_i - \mu_i||_2^2 + \frac{\lambda_1}{2} \sum_{i < j} ||\mu_i - \mu_j - \theta_{ij}||_2^2 + \frac{\lambda_2}{2} \sum_{i < j} ||\theta_{ij}||_1,$$

$$(3)$$

$$S(\mu, \theta) = \frac{1}{2} \sum_{i=1}^{n} ||x_i - \mu_i||_2^2 + \frac{\lambda_1}{2} \sum_{i < j} ||\mu_i - \mu_j - \theta_{ij}||_2^2 + \lambda_2 \sum_{i < j} ||\text{TLP}(||\theta_{ij}||_2; \tau).$$

$$(4)$$

- gTLP: non-convex; use difference of convex programming ...
- Then apply coordinate-descent
- Property: finite and monotone convergence to a local minimizer.

Results

• Simulation cases: case I, n = 50 + 50;

Figure 2: The first simulated data set in a) Case I, b) Case II and c) Case VI.

Figure 3: GDF₁in K-means.

Figure 4: Solution paths of $\hat{\mu}_{i,1}$ for a) PRclust (with gTLP), b) PRclust2, c) PRclust with the Lasso penalty and d) HTclust for

Figure 5: Solution paths of $\hat{\mu}_{i,1}$ for PRclust- L_q with a) q=1, b) q=2 and c) $q=\infty$ for the first simulated dataset in Case I.

Summary

- Non-covex (e.g. TLP) grouping penalty: better in separating clusters than convex (e.g. L_q -norm) grouping penalties!
- A group penalty (e.g. gTLP) is better than a non-group one (e.g. TLP or Lasso).
- Clustering: like regression or supervised learning?! techniques from the latter, e.g. model selection criteria, ...
- Extensions and applications: on-going

Acknowledgment: This research was supported by NIH. Thank you!