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Outline
Problem

New methods: Pan, Shen and Liu (2013, JMLR)

Shen, Pan and Zhu (2012, JASA): TLP
Numerical Results: simulated and real data

Summary



Clustering Analysis

e Given data X = (1, ...,2;,)" with z; = (21, zi2, ..., zip) ,find
centroids p; for each x;;
Clustering: many p;’s are equal!

e Most algorithms specify a few p;’s, then try to estimate them.

K-means, (Gaussian) mixture models, ...

e Here, we specify n u;’s, over-parametrized!
Main idea: group p;’s by penalization!




New Methods

e A general framework: like regression,
. 1O
fu = argmin 5 D L(wi = pa) + A (s — py),
A i<j
where L() is a loss, h() is a grouping or fusion penalty.

e [LS-L; (or Lasso) (Tibshirani 1996):
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where ||.||, is the L,-norm.

e Ours: TLP (Shen et al 2012) is defined as
TLP(a;7) = min(|a, 7),

where 7 is a tuning parameter.




e A key property:

TLP(«a;7) /7 — Lo(a) = I(a #£ 0)
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Figure 1: TLP.




e Ours: a group TLP (gTLP) penalty

gTLP (s — pijs 7) = TLP([| s — pijll2; 7).
better than L,-norm for g > 1.

e Summary: Lasso- and gTLP-based PRclust:
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A cluster: z;’s with equal fi;.
e Computing: Not separable, no coordinate-descent algorithm!

e Alternative: quadratic penalty method via reparametrization




0;; = s — pj for 1 <14 < j < n; new objective functions:
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e ¢gTLP: non-convex; use difference of convex programming ...
e Then apply coordinate-descent

e Property: finite and monotone convergence to a local

minimizer.




e An advantage of PRclust: use a model selection criterion in

regression;

GCV (Golub et al 1979);
GDF based on data perturbation (Ye 1998; Shen and Ye 2002).
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Results

e Simulation cases: case I, n = 50 + 50;

a) Case | b) Case c) Case VI

]:]1111 11110 3
1 111]1]1 33,
11T 33

111 1

1 g
1171 o 1
|

I
-1 0

X1

Figure 2: The first simulated data set in a) Case I, b) Case II
and c) Case VI.
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Figure 3: GDFin K-means.



a) PRclust-gTLR, A; =1 b) PRclust2—gTLP, large A;
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Figure 5: Solution paths of ji; 1 for PRclust-L, with a) ¢ = 1,

b) ¢ =2 and c¢) ¢ = oo for the first simulated dataset in Case I.




Summary

Non-covex (e.g. TLP) grouping penalty: better in separating

clusters than convex (e.g. L,-norm) grouping penalties!

A group penalty (e.g. gTLP) is better than a non-group one
(e.g. TLP or Lasso).

Clustering: like regression or supervised learning?!

techniques from the latter, e.g. model selection criteria, ...

Extensions and applications: on-going
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