Discussion

Wei Pan1

1Division of Biostatistics, School of Public Health
University of Minnesota

ENAR Meeting on March 19, 2014
Outline

- General: why/how does KMR work?
 its connections to other methods.

- Specifics: choice of the kernel

- Main refs:
 - Pan (2009, *Genetic Epi*): SSU, SSU = an EB test of
 - Han and Pan (2011, *Genetic Epi*): SSU = GDBR (Wessel
 and Schork 2006, *AJHG*; McArdle and Anderson 2001,
 Ecology);
 - Pan (2011, *Genetic Epi*): KMR = SSU = GDBR
KMR, SSU, Goeman’s EB test, GDBR, ...

- My experiences mainly with SNP/seq data:
 1) SNP data: Goeman’s test (Chapman and Whittaker 2008);
 SSU=Goeman’s test (Pan 2009);
 2) SNP data: GDBR (Lin and Schaid 2009);
 3) Seq data (RVs): SSU=KMR (Basu and Pan 2011); SKAT
 (Wu et al 2011, 2012, ...)
 Recently, neuroimaging data.

- KMR: a semi-parametric model

\[
\text{Logit Pr}(Y_i = 1) = \beta_0 + h(X_i), \quad (1)
\]

\(h()\) is unspecified, but determined by a kernel \(K\).

- \(h = (h_1(X_1), ..., h_n(X_n))' \sim F(0, \tau^2 K),\)
 \(K = K(\rho) = (K_{ij})\) with \(K_{ij} = K(X_i, X_j)\).

- \(H'_0: \, h = 0\) becomes \(H_0: \, \tau = 0\).
• Score test statistic for H_0 is (proportional to)

$$Q = (Y - \bar{Y}1)'K(Y - \bar{Y}1).$$

• Since K is symmetric and p.s.d, $K = ZZ'$. A linear kernel $K = XX'$, $Z = X$.

• Fit a parametric logistic reg model:

$$\text{Logit Pr}(Y = 1) = \beta_0 + Z\beta, \quad (2)$$

• Score vector $U = Z'(Y - \bar{Y}1)$

• SSU test: $T_{SSU} = U'U = Q \implies \text{SSU=KMR if } K = ZZ'$.

 $T_{Sco} = U'\text{Cov}(U)^{-1}U$.

• GDBR: nonparametric MANOVA

$$F = \frac{tr(HGH)}{tr[(I - H)G(I - H)]},$$

$$G = (I - 11'/n)A(I - 11'/n), \quad A = (-D^2_{ij}/2), \quad D = (D_{ij}) \text{ with}$$
\[D_{ij} = d(X_i, X_j). \]
\[H = y(y'y)^{-1}y'. \]

- If \(G = ZZ' \), then \(F = T_{SSU} \).
 More, if \(K = ZZ' \), then \(F = T_{SSU} = Q \), GDBR=SSU=KMR!
- SSU = Goeman’s test (Pan 2009).
- Why these relevant?
- 1) Choice of the kernel: not easy,
 \(K \) has to be p.s.d., why? if not, then ...
 SSU=KMR: use transformed \(Z \), not \(X \), in logistic reg;
 BUT
- 2) Can use multiple kernels, even transformed \(Z \), then combine,
 or use other tests (e.g. Score test) (Han and Pan 2011);
• 3) Can generalize KMR, through SSU, to more complex data (Wang et al 2013);

• 4) Some optimality property:
 Goeman’s test: highest average local power (Goeman et al 2006).
 No (local) uniformly most powerful test for multiple parameters (Cox and Hinkley 1974).

• Extensions to multivariate phenotypes: Hua and Ghosh (2014).
Specific choice of the kernel

- Metabolomic data:
 Two types: missing (0) or not; if not then abundance.
 Missing: truncation and more?

- A distance kernel:
 \[K_d(X_i, X_j) = \exp \left\{ \frac{-d^2(X_i, X_j)}{\rho} \right\}. \]

- \[d(X_i, X_j) = \sqrt{\sum_k I(\delta_{X_{ik}} = \delta_{X_{jk}}) + \sum_k (X_{ik} - X_{jk})^2}. \]

- +: use the two types of data;
 challenge: trade-off b/w the two components;

- A stratified kernel:
 1) if the same missing pattern (\(\delta_{X_i} = \delta_{X_j}\)), then
 \[K_s(X_i, X_j) = K_d(X_i, X_j); \]
2) o/w, $K_s(X_i, X_j) = 0$;

- $+$: more general, but maybe too extreme.

- Other features: testing a group of metabolites;
 An interesting grouping method: connected subgraphs based on marginal Corr(X_i, X_j)’s.
Acknowledgement: This research was supported by NIH.

You can download our papers from
http://www.biostat.umn.edu/rrs.php

Thank you!