Incorporating Predictor Network in Penalized Regression with Application to Microarray Data

Wei Pan¹

(joint work with Benhuai Xie¹, Chong Luo¹, Xiaotong Shen²)

¹Division of Biostatistics, School of Public Health

²School of Statistics

University of Minnesota

IBC 2012, Kobe, Japan August 27, 2012

Outline

- Problem
- Review: Existing penalized methods
- New methods
 Pan, Xie and Shen (2010, Biometrics);
 Luo, Pan and Shen (2012, Statistics in Biosciences);
- Discussion

Introduction

• Problem: linear model

$$Y = \sum_{i=1}^{p} X_i \beta_i + \epsilon, \quad E(\epsilon) = 0, \tag{1}$$

Feature: large p, small n.

- Q: variable selection; prediction
- Example 1: Li and Li (2008); Pan, Xie & Shen (2010)

Y: clinical outcome, e.g. survival time;

 X_i : expression level of gene i.

- Example 2: eQTL analysis, Pan (2009)
- Typical approaches: ignore any relationships among X_i 's.
- In our applications: genes are related ... e.g. as described by a network:

4

Figure 1:

- Various types of gene networks: regulatory; co-expression; protein-protein interaction; pathways ...
- Network assumption/prior: if two genes $i \sim j$ in a network, then $|\beta_i| \approx |\beta_j|$, or $|\beta_i|/w_i \approx |\beta_j|/w_j$.
- Goal: utilize the above assumption/prior.
- How?

Review: Existing Methods

• Penalized methods: for "large p, small n"

$$\hat{\beta} = \arg\min_{\beta} L(\beta) + p_{\lambda}(\beta),$$

• Lasso (Tibshirani 1996):

$$p_{\lambda}(\beta) = \lambda \sum_{k=1}^{p} |\beta_k|.$$

Feature: variable selection; some $\hat{\beta}_k = 0$.

• Elastic net (Zou and Hastie 2005)

$$p_{\lambda}(\beta) = \lambda \sum_{k=1}^{p} |\beta_k| + \lambda_2 \sum_{k=1}^{p} \beta_k^2.$$

But ...

• A network-based penalty of Li and Li (2008):

$$p_{\lambda}(\beta) = \lambda_1 \sum_{i=1}^{p} |\beta_i| + \lambda_2 \sum_{i \sim j} \left(\frac{\beta_i}{\sqrt{d_i}} - \frac{\beta_j}{\sqrt{d_j}} \right)^2, \qquad (2)$$

 d_i : degree of node i;

Feature: two λ 's and two terms for diff purposes ...

Problem: if β_i and β_j have diff signs ...

• A modification by Li and Li (2010):

$$p_{\lambda}(\beta) = \lambda_1 \sum_{i=1}^{p} |\beta_i| + \lambda_2 \sum_{i \sim j} \left(\frac{sgn(\tilde{\beta}_i)\beta_i}{\sqrt{d_i}} - \frac{sgn(\tilde{\beta}_j)\beta_j}{\sqrt{d_j}} \right)^2, \quad (3)$$

 $\tilde{\beta}_j$: an initial estimate based on Enet; a 2-step procedure.

• A class of network-based penalties of Pan, Xie and Shen (2010):

$$p_{\lambda}(\beta; \gamma, w) = \lambda 2^{1/\gamma'} \sum_{i \sim j} \left(\frac{|\beta_i|^{\gamma}}{w_i} + \frac{|\beta_j|^{\gamma}}{w_j} \right)^{1/\gamma} \tag{4}$$

- w_i : smooth what?
 - 1) $w_i = d_i^{(\gamma+1)/2}$: smooth $|\beta_i|/\sqrt{d_i}$, as in Li and Li;
 - 2) $w_i = d_i$: smooth $|\beta_i|$

Some theory under simplified cases.

- Feature: each term is an L_{γ} norm, $\gamma \geq 1$ \Longrightarrow **group** variable selection!; Yuan and Lin 2006, Zhao et al 2007.
 - \implies tend to realize $\hat{\beta}_i = \hat{\beta}_j = 0$ if $i \sim j!$

Corollary 1 Assume that X'X = I. For any edge $i \sim j$, a sufficient condition for $\hat{\beta}_i = \hat{\beta}_j = 0$ is

$$\|(\tilde{\beta}_i, \tilde{\beta}_j)\|_{\gamma'}^{(1/w_i, 1/w_j)} \le \lambda 2^{1/\gamma'}, \tag{5}$$

and a necessary condition is

$$||(\tilde{\beta}_i, \tilde{\beta}_j)||_{\gamma'}^{(1/w_i, 1/w_j)} \le \lambda 2^{1/\gamma'} + d_i + d_j - 2,$$
 (6)

where $(\tilde{\beta}_i, \tilde{\beta}_j)$ are LSEs.

- γ : a larger γ smoothes more;
- \bullet $\gamma = \infty$:

$$p_{\lambda} = \lambda \sum_{i \sim j} \max \left(\frac{|\beta_i|}{\sqrt{d_i}}, \frac{|\beta_j|}{\sqrt{d_j}} \right)$$

maximally forces $|\hat{\beta}_i|/\sqrt{d_i} = |\hat{\beta}_j|/\sqrt{d_i}$ if $i \sim j!$

- Other theoretical results (under simplified conditions): shrinkage effects, grouping effects ...
- Computational algorithm of Pan et al (2010): Generalized boosted lasso (GBL) (Zhao and Yu 2004); providing approximate solution paths.
- Use CV to choose tuning parameters, e.g. λ .

• Some simulation results:

PMSE: prediction mean squared error for Y;

 q_1 : # false zeros $(\beta_i \neq 0 \text{ but } \hat{\beta}_i = 0)$;

 q_0 : # true zeros ($\beta_i = 0$ and $\hat{\beta}_i = 0$);

 $n = 50, p = p_1 + p_0 = 44 + 66$

Set-up	Methods	PMSE	q_1	q_0
1	Lasso	166.6 (32.9)	20.1 (2.5)	53.9 (6.4)
	Enet	164.3 (29.3)	10.6 (9.2)	31.4 (24.0)
	Li&Li	154.6 (28.3)	5.0 (7.6)	$15.1\ (21.2)$
	$\gamma = 2$	138.1 (32.3)	3.2(3.7)	60.0 (5.4)
	$\gamma = 8$	132.0 (35.8)	3.2 (4.3)	60.0 (4.8)
	$\gamma = \infty$	162.9 (46.6)	7.3 (5.9)	56.6 (6.8)
2	Lasso	160.8 (39.0)	30.2 (4.0)	61.1 (4.2)
	Enet	161.1 (45.5)	29.0 (8.5)	57.8 (15.1)
	Li&Li	161.7 (44.7)	$26.0\ (11.7)$	$52.1\ (22.3)$
	$\gamma = 2$	161.2 (44.3)	16.8 (8.2)	61.3 (5.1)
	$\gamma = 8$	169.9 (57.4)	19.6 (10.1)	60.2 (7.5)
	$\gamma = \infty$	186.0 (67.6)	23.6 (10.0)	61.0 (7.4)

• Conclusion of Pan et al (2010): best for variable selection, but not necessarily in prediction (PMSE).

A surprise: $\gamma = \infty$ did not work well!

• Why?

		$\beta_1 = 5$				$\beta_2 = 1.58$			
Set-up	Methods	Mean	Var	MSE	-	Mean	Var	MSE	
1	Lasso	5.28	8.69	8.69		1.43	2.43	2.42	
	Enet	3.79	4.76	6.18		1.82	1.86	1.90	
	Li&Li	5.00	1.69	1.67		1.74	1.33	1.34	
	$\gamma = 2$	3.82	1.02	2.41		1.51	1.29	1.28	
	$\gamma = 8$	3.47	0.79	3.12		1.50	1.02	1.02	
	$\gamma = \infty$	2.13	1.33	9.57		1.64	2.08	2.06	
		$\beta_1 = 5$				$\beta_2 = -1.58$			
2	Lasso	2.54	4.31	10.31	_	0.13	0.34	3.25	
	Enet	2.87	4.85	9.32		0.16	0.41	3.44	
	Li&Li	2.88	3.97	8.43		0.16	0.43	3.45	
	$\gamma = 2$	1.37	0.79	14.00		0.22	0.28	3.53	
	$\gamma = 8$	1.07	0.80	16.22		0.24	0.36	3.67	
	$\gamma = \infty$	0.47	0.46	20.98		0.23	0.39	3.65	

Modifications

- Q1: What is the comparative performance of GBL? GBL provides only *approximate* solution paths.
- Pan et al (2010): for a general γ , non-linear programming. Special case: $\gamma = \infty$, quadratic programming
- Use CVX package in Matlab!

Set-up	Methods	PMSE	q_1	q_0
1	Lasso	166.6 (32.9)	20.1 (2.5)	53.9 (6.4)
	Enet	164.3 (29.3)	10.6 (9.2)	$31.4\ (24.0)$
	Li&Li	154.6 (28.3)	5.0 (7.6)	$15.1\ (21.2)$
	$\gamma = 2$	$138.1 \ (32.3)$	3.2(3.7)	60.0 (5.4)
	$\gamma = 8$	132.0 (35.8)	3.2 (4.3)	60.0 (4.8)
	$\gamma = \infty$	162.9 (46.6)	7.3 (5.9)	56.6 (6.8)
	QP, $\gamma = \infty$	126.6 (32.8)	1.1 (2.6)	$56.1\ (12.0)$
2	Lasso	160.8 (39.0)	30.2 (4.0)	61.1 (4.2)
	Enet	$161.1 \ (45.5)$	29.0 (8.5)	57.8 (15.1)
	Li&Li	161.7 (44.7)	$26.0\ (11.7)$	$52.1\ (22.3)$
	$\gamma = 2$	161.2 (44.3)	16.8 (8.2)	61.3 (5.1)
	$\gamma = 8$	169.9 (57.4)	19.6 (10.1)	60.2 (7.5)
	$\gamma = \infty$	186.0 (67.6)	$23.6\ (10.0)$	61.0 (7.4)
	QP, $\gamma = \infty$	143.1 (27.7)	9.5 (7.0)	51.6 (15.0)

		$\beta_1 = 5$				$\beta_2 = 1.58$			
Set-up	Methods	Mean	Var	MSE	Mean	n Var	MSE		
1	Lasso	5.28	8.69	8.69	1.43	3 2.43	2.42		
	Enet	3.79	4.76	6.18	1.83	2 1.86	1.90		
	Li&Li	5.00	1.69	1.67	1.74	4 1.33	1.34		
	$\gamma = 2$	3.82	1.02	2.41	1.5	1.29	1.28		
	$\gamma = 8$	3.47	0.79	3.12	1.50	1.02	1.02		
	$\gamma = \infty$	2.13	1.33	9.57	1.64	2.08	2.06		
	QP, $\gamma = \infty$	3.34	0.67	3.42	1.58	3 1.12	1.65		
			$\beta_1 = 5$			$\beta_2 = -1.58$			
2	Lasso	2.54	4.31	10.31	0.13	3 0.34	3.25		
	Enet	2.87	4.85	9.32	0.10	0.41	3.44		
	Li&Li	2.88	3.97	8.43	0.10	0.43	3.45		
	$\gamma = 2$	1.37	0.79	14.00	0.23	0.28	3.53		
	$\gamma = 8$	1.07	0.80	16.22	0.24	4 0.36	3.67		
	$\gamma = \infty$	0.47	0.46	20.98	0.23	3 0.39	3.65		
	QP, $\gamma = \infty$	1.31	0.74	14.35	0.33	2 0.59	4.19		

• Conclusion: better prediction, but still severely biased coef estimates!

Problem is not (likely) computational

- Q2: How to reduce (or eliminate) the bias?
- Tried ideas similar to adaptive Lasso, relaxed Lasso, an adaptive non-convex penalty (TLP) ...

BUT none worked!

Why?

To achieve two goals: variable selection and grouping

- New method: a 2-step procedure; similar to Li and Li (2010):
- Step 1: same as before,

$$p_{\lambda} = \lambda \sum_{i \sim j} \max\left(\frac{|\beta_i|}{\sqrt{d_i}}, \frac{|\beta_i|}{\sqrt{d_i}}\right)$$

• Step 2: force $\beta_i = \beta_j = 0$ if $\tilde{\beta}_i = \tilde{\beta}_j = 0$ and $i \sim j$, then use the

fused Lasso penalty:

$$p_{\lambda} = \lambda \sum_{i \sim j} \left| \frac{sgn(\tilde{\beta}_i)\beta_i}{\sqrt{d_i}} - \frac{sgn(\tilde{\beta}_j)\beta_j}{\sqrt{d_j}} \right|$$

- Use CVX package in Matlab! Both steps involve QP.
- A problem: depends on Step 1.
- Ideally in Step 2:

$$p_{\lambda} = \lambda \sum_{i \sim j} \left| \frac{|\beta_i|}{\sqrt{d_i}} - \frac{|\beta_j|}{\sqrt{d_j}} \right|$$

but non-convex ...

Set-up	Methods	PMSE	q_1	q_0
1	Lasso	166.6 (32.9)	$20.1\ (2.5)$	53.9 (6.4)
	Enet	164.3 (29.3)	10.6 (9.2)	$31.4\ (24.0)$
	Li&Li	154.6 (28.3)	5.0 (7.6)	$15.1\ (21.2)$
	$\gamma = 2$	138.1 (32.3)	3.2(3.7)	60.0 (5.4)
	$\gamma = 8$	132.0 (35.8)	3.2 (4.3)	60.0 (4.8)
	$\gamma = \infty$	162.9 (46.6)	7.3 (5.9)	56.6 (6.8)
	QP, $\gamma = \infty$	126.6 (32.8)	$1.1\ (2.6)$	$56.1\ (12.0)$
	2-step, $\gamma = \infty$	87.5 (17.6)	1.2(2.7)	60.5 (11.9)
2	Lasso	160.8 (39.0)	30.2 (4.0)	61.1 (4.2)
	Enet	161.1 (45.5)	29.0 (8.5)	57.8 (15.1)
	Li&Li	161.7 (44.7)	$26.0\ (11.7)$	$52.1\ (22.3)$
	$\gamma = 2$	161.2 (44.3)	16.8 (8.2)	61.3 (5.1)
	$\gamma = 8$	169.9 (57.4)	19.6 (10.1)	60.2 (7.5)
	$\gamma = \infty$	186.0 (67.6)	$23.6\ (10.0)$	61.0 (7.4)
	QP, $\gamma = \infty$	143.1 (27.7)	9.5 (7.0)	$51.6\ (15.0)$
	2-step, $\gamma = \infty$	130.2 (27.7)	10.2 (7.5)	56.1 (15.5)

		$\beta_1 = 5$			eta	$\beta_2 = 1.58$			
Set-up	Methods	Mean	Var	MSE	Mean	Var	MSE		
1	Lasso	5.28	8.69	8.69	1.43	2.43	2.42		
	Enet	3.79	4.76	6.18	1.82	1.86	1.90		
	Li&Li	5.00	1.69	1.67	1.74	1.33	1.34		
	$\gamma = 2$	3.82	1.02	2.41	1.51	1.29	1.28		
	$\gamma = 8$	3.47	0.79	3.12	1.50	1.02	1.03		
	$\gamma = \infty$	2.13	1.33	9.57	1.64	2.08	2.00		
	QP, $\gamma = \infty$	3.34	0.67	3.42	1.58	1.12	1.6		
	2-step, $\gamma = \infty$	5.00	0.56	0.56	1.49	0.60	0.6		
			$\beta_1 = 5$		eta_2	$\beta_2 = -1.58$			
2	Lasso	2.54	4.31	10.31	0.13	0.34	3.2		
	Enet	2.87	4.85	9.32	0.16	0.41	3.4		
	Li&Li	2.88	3.97	8.43	0.16	0.43	3.4		
	$\gamma = 2$	1.37	0.79	14.00	0.22	0.28	3.5		
	$\gamma = 8$	1.07	0.80	16.22	0.24	0.36	3.6°		
	$\gamma = \infty$	0.47	0.46	20.98	0.23	0.39	3.6		
	QP, $\gamma = \infty$	1.31	0.74	14.35	0.32	0.59	4.19		
	2-step, $\gamma = \infty$	3.09	1.35	4.98	0.31	1.06	4.62		

An Example

• 50 glioblastoma patients (Horvath et al 2006); 1 outlier excluded $\implies n = 49$.
median survival time: 15 months;

• Data:

Y: log survival time (in years);

X: gene expression levels on Affy HG-133A arrays;

• A network of 1668 genes from 33 KEGG pathways, compiled by Wei and Li (2007).

common: p = 1523 genes.

6865 edges;

 d_i : 1 to 81; mean at 9; Q1, Q2 and Q3 at 2, 4, 11.

- Goal: variable selection Q: which genes' expression levels predict the survival time?
- n = 30 + 19 for training + tuning.

- Lasso's=Enet's results: 11 genes, ADCYAP1R1, ARRB1, CACNA1S, CTLA4, FOXO1, GLG1, IFT57, LAMB1, MPDZ, SDC2, and TBL1X. no edge b/w any two genes.
- Our method: $\gamma = 2$, $w_i = d_i^{(\gamma+1)/2}$. 17 genes: ADCYAP1, <u>ADCYAP1R1</u>, <u>ARRB1</u>, CCL4, CCS, CD46, CDK6, FBP1, FBP2, FLNC, <u>FOXO1</u>, GLG1, IFT57, MAP3K12, SSH1, <u>TBL1X</u>, and TUBB2C; underlined: identified by both
- Two genes linked to glioblastoma: FOXO1 (Choe et al 2003; Seoane et al 2004): by both; CDK6 (Ruano et al 2006; Lam et al 2000): only by ours;
- According to the Catalogue Of Somatic Mutations In Cancer (COSMIC) database (Forbes et al 2006): among the above selected genes,

IFT57, CDK6 and MAP3K12 have cancer-related mutations; Lasso/Enet identified only one, IFT57; Ours: all 3.

• Also applied the modified 1-step and 2-step methods: Marked out those in the Cancer Gene database (Higgins et al 2007): 9/17, 20/40, 14/39 for the 3 methods.

Figure 3: The genes selected by the GBL algorithm. Dark ones are the Cancer Genes.

Figure 4: The genes selected by the CVX algorithm. Dark ones are the Cancer Genes.

Figure 5: The genes selected by the 2-step procedure. Dark ones are the Cancer Genes.

Discussion

- Penalty and computational algorithm matter!
- Can be extended to SVM (Zhu, Pan & Shen 2009, 2010);
- Relax the smoothness assumption:

 New assumption: neighboring genes are more likely to participate or not participate at the same time; no assumption on the smoothness of regression coefficients.
- Prior: if $i \sim j$, more likely to have $I(\beta_i \neq 0) = I(\beta_j \neq 0)$ just for variable selection
- Bayesian approaches (Moni and Li 2009; Li and Zhang 2009; Tai, Pan & Shen 2010)
- A penalized approach: Kim, Pan and Shen (2012, submitted).
 - 1. How to approximate the discontinuous $I(\beta_j \neq 0)$?

Truncated Lasso Penalty (Shen, Pan & Zhang 2012, JASA):

$$TLP(\beta_j; \tau) = \min(1, |\beta_j|/\tau) \to I(\beta_j \neq 0)$$

as $\tau \to 0^+$; see Fig 6

Figure 6:

2. Use a new penalty

$$p_{\lambda}(\beta;\tau) = \lambda \sum_{i \sim j} |TLP(\beta_i;\tau) - TLP(\beta_j;\tau)|.$$

- 3. But $p_{\lambda}(\beta; \tau)$ is not convex; use difference convex (DC) programming!
- Another application: eQTL mapping (Pan, 2009, Bioinformatics).

$$Y_g = X\beta_g + \epsilon_g, \quad E(\epsilon_g) = 0, \tag{7}$$

for g = 1, ..., G.

X: DNA markers; obs $(Y_1,...,Y_G,X)$.

Q: which markers are associated with Y_g ?

 \implies variable selection or ...

• Typical approaches: Gene-by-gene, separately, BUT, genes are related...
e.g. as described by a co-expression network:
Derived from Ghazalpour et al's data;
Genes with their expression traits linked to a marker in chromosome 2 as suggested

- 1) by Lars: red ones;
- 2) by ours: red and orange ones.

33

Figure 7:

 $\Longrightarrow Y'_g s$ are correlated, and more likely to be co-regulated!

- Network assumption/prior: if two genes $g \sim h$ in a network, then $|\beta_g| \approx |\beta_h|$.
- Goal: utilize the above assumption/prior.
- How?
- Reformulate the original multiple regressions to a single regression:

$$Y_c = (Y'_1, ..., Y'_G)',$$

 $X_c = diag(X, ..., X),$
 $\beta = (\beta'_1, ..., \beta'_G)',$

$$Y = X\beta + \epsilon, \quad E(\epsilon) = 0, \tag{8}$$

Acknowledgement: This research was supported by NIH.

You can download our papers from http://sph.umn.edu/ex/biostatistics/techreports.php?

Thank you!