Testing for Disease-Rare Variant Association with Sequence Data

Wei Pan^1

¹Division of Biostatistics, School of Public Health

University of Minnesota

Oct 6, 2011

Outline

- Introduction: problem No data preprocessing; genotypes given.
- Review some existing and new methods Pooled association tests, e.g., Sum test; Newer ones: aSum, SSU tests.
- Example data: 1000 Genome Project
- Main refs:

Pan (2009, Genet Epi), Han and Pan (2010, Hum Hered), Basu and Pan (2011, Genet Epi), Pan and Shen (2011, Genet Epi), ...

Introduction

- Single Nucleotide Polymorphism (SNP) or Variant (SNV) DNA seq 1 – AAGCCTA DNA seq 2 – AAGCTTA two alleles, C and T; 3 genotypes: CC, TT, CT; SNP: a minor allele freq (MAF) ≥ 5% (or 1%). SNV: less frequent variant or rare variant (RV) with MAF < 1%.
- Genome-wide association studies (GWAS): Genome-wide tag SNPs (1 M) are measured as markers for each subject;

Target: common disease-common variant (CD-CV) association; Ultimate goal: to detect *causal* CVs.

• GWAS: a success!?

As of 10/5/11 (or 01/19/11 or 9/24/09 or 11/24/08), the NIH

Catalog of Published Genome-Wide Association Studies "includes **1030** (or 791 or 396 or 202) publications and **5108** (or 3939 or 1760 or 435) SNPs" that are associated with some phenotypes, such as prostate cancer, diabetes, bipolar disorder...

- But ... explain only a small proportion of heritability! Willer et al (2009): BMI; n = 3287 and 45018 for stages 1 and 2; identified 8 loci, explaining 0.84% of phenotype variance; genetic heritability 40-70%.
- Possibilities: polygenic (small) effects; G-G and G-E interactions; other variants (e.g. CNV); RVs; ...
- PCSK9 gene (Kotowski et al 2006): some RVs associated with **lower** plasma levels of LDL-C; some RVs associated with **higher** plasma levels of LDL-C;
- Next-generation sequencing (NGS):

Sequence (SNVs) of whole exome or genome for each subject; Target: common disease–RV association

- Most common study design: case-control; *n* in hundreds, then thousands, then ?
- Analysis unit

GWAS: single SNPs; more multi-SNP analyses? NGS: multiple RVs, e.g. in a candidate gene or region; • Data:

Obs	Y	SNP1	SNP2	SNP3	• • •	SNPk
1	1	CT	AG	CG	• • •	AC
2	1	TT	AG	GG	• • •	AA
3	1	СТ	AA	CG	•••	CC
• • • • •	•					
1001	0	СТ	AG	CC	• • •	AC
1002	0	TT	GG	CC	• • •	AC
1003	0	CC	GG	CC	• • •	CC

- A binary response: Y = 0 or 1; each SNP j is coded as X_j = 0, 1 or 2, # copies of minor alleles;
- Statistical question: any SNP associated with Y?
- Most popular test in GWAS: univariate or single SNP-based

• Should it be multivariate?

e.g., k > 1 SNPs inside a **given** LD block or sliding window. Selection of LD block or window size: relevant, not trivial.

- For RVs: small MAF ⇒ univariate tests ...
 n = 1000, MAF=1% ⇒ #(minor alleles) ≈ 20;
 n = 1000, MAF=0.1% ⇒ #(minor alleles) ≈ 2;
 Design matrix X: almost all 0's!
- RVs: small MAF \implies aggregation! combine multiple RVs!

Existing methods

• Single-locus (or SNP-by-SNP or univariate) analysis: GWAS

- Model:
$$Y \sim SNP_j$$

Logit
$$\Pr(Y_i = 1) = \beta_{M,0j} + X_{ij}\beta_{M,j},$$
 (1)

$$- H_{0,j}: \beta_{M,j} = 0 \text{ for each } j = 1, ..., k$$
$$\implies p_j.$$

- Combining: $UminP = min(p_1, p_2, ..., p_k)$ or ... Need to do multiple test adjustment!
- Model (1): as a 2×3 table; Cochran-Armitage trend test.

- Multivariate (or global or joint) analysis:
 - Model: $Y \sim SNP_1 + \ldots + SNP_k$

Logit
$$\Pr(Y_i = 1) = \beta_0 + \sum_{j=1}^k X_{ij}\beta_j,$$

$$- H_0: \beta_1 = \dots = \beta_k = 0$$

- Use the score, Wald or LR test: $T_W = \hat{\beta}' V^{-1} \hat{\beta}, T_S = U' V_U^{-1} U \sim \chi_k^2$ under H_0 ; $V = Cov(\hat{\beta}), V_U = Cov(U)$; Possibly large DF = k.
- Hotelling's T^2 test: closely related to the score test.

- Pooled association tests: aggregation; Sum test
 - Working (and *incorrect*) assumption: $\beta_1 = ... = \beta_k \equiv \beta_c$.
 - Model:

Logit
$$\Pr(Y_i = 1) = \beta_{0,c} + \sum_{j=1}^k X_{ij}\beta_c = \beta_{0,c} + X_{i,c}\beta_c,$$
 (3)

$$- H_{0,c}: \beta_c = 0$$

- Apply the score, Wald or LR test $T_W = \hat{\beta}_c^2 / V_c \sim \chi_1^2$ under $H_{0,c}$.
- Feature: DF=1; no multiple testing!
- Correct test size:

 $H_0 \Longrightarrow H_{0,c}!$

- Closely related to CMC (Li and Leal 2008), weighted sum (Madsen and Browning 2009) tests: $\vee_{j=1}^{k} X_{ij} \approx \sum_{j=1}^{k} X_{ij}$ **Power**: OR=(2, 2, 2, 2, 2, 2, 2, 2); No LD; n = 500 + 500; MAFs ~ U(.001, .01) for controls;

Test	# of neutral RVs					
	0	4	8	16	32	64
UminP	.441	.336	.296	.222	.175	.117
Score	.746	.632	.595	.471	.332	.245
CMC	.938	.853	.777	.616	.399	.211
wSum	.940	.846	.782	.618	.424	.267
Sum	.951	.875	.808	.673	.484	.313
aSum	.933	.858	.780	.669	.499	.313
SSU	.756	.702	.694	.626	.499	.423
$\mathrm{KMR}(\mathrm{Linear})$.762	.711	.699	.631	.509	.438
C-alpha	.771	.712	.688	.627	.484	.378

Power: OR = (3, 3, 2, 2, 2, 1/2, 1/2, 1/2); No LD; n = 500 + 500; MAFs ~ U(.001, .01) for controls;

Test	# of neutral RVs					
	0	4	8	16	32	
UminP	.607	.532	.481	.417	.346	
Score	.869	.772	.721	.632	.483	
CMC	.661	.544	.456	.336	.204	
wSum	.659	.548	.459	.335	.228	
Sum	.682	.566	.465	.365	.258	
aSum	.854	.745	.684	.574	.430	
SSU	.895	.835	.815	.774	.696	
KMR	.897	.842	.824	.783	.707	
C-alpha	.906	.844	.823	.775	.674	

Newer methods

- Summary: 1) pooled association tests (Sum, CMC, wSum) do not perform well if there are opposite association directions!
- A strategy: decide the association directions first! An adaptive Sum (aSum) test: Han and Pan (2010); More works:... But ...
- Equally (or more?) importantly, pooled association tests (Sum, CMC, wSum) do not perform well if there are many non-associated RVs.

Presence of non-associated RVs: expected!

• A strategy: SSU test!

• Recall
$$LRT \approx Wald's \approx Score = U'V^{-1}U$$
,
 $U = \sum_{i=1}^{m} X_i(Y_i - \bar{Y}),$
 $V = Cov(U) = I_F = \bar{Y}(1 - \bar{Y})(X - \bar{X})'(X - \bar{X}).$

• New tests:

$$SSU = U'U \approx SSB = \sum_{j=1}^{k} \hat{\beta}_{M,j}^2,$$

Null distributions for Q = U'W⁻¹U:
1) W = I and W = Diag(V_M) in the above;
2) Q ~ ∑^k_{j=1} c_j χ²₁, where c_j's are the eigen values of V_MW⁻¹;
3) Zhang (2005, JASA): approximate by aχ²_d + b with

$$a = \frac{\sum_{j=1}^{k} c_j^3}{\sum_{j=1}^{k} c_j^2}, \quad b = \sum_{j=1}^{k} c_j - \frac{\left(\sum_{j=1}^{k} c_j^2\right)^2}{\sum_{j=1}^{k} c_j^3}, \quad d = \frac{\left(\sum_{j=1}^{k} c_j^2\right)^3}{\left(\sum_{j=1}^{k} c_j^3\right)^2}.$$

4) $Pr(SSU > s|H_0) \approx Pr\left(\chi_d^2 > (s-b)/a\right).$

• A weighted version of SSU: $SSUw = U'diag(V)^{-1}U$.

- Result 1: SSU = Goeman's EB test for high-dim data:
- Goeman's test:
 - Set-up: "large k, small n" as for microarray data;
 - Assume $\beta = (\beta_1, ..., \beta_k)'$ random: $E(\beta) = 0, Cov(\beta) = \tau^2 I.$
 - Test H_{0,τ^2} : $\tau^2 = 0$ by a score test.
 - For logistic regression:

 $T_{Go} = \frac{1}{2}(U'U - \operatorname{Trace}(I_F)), \quad \text{where } U = X'(Y - \bar{Y}),$ and $I_f = Cov(U) = \bar{Y}(1 - \bar{Y})(X - \bar{X})'(X - \bar{X}).$

$$T_{Go} = \frac{1}{2} (Y - \bar{Y})' X X' (Y - \bar{Y}) - \frac{1}{2} \bar{Y} (1 - \bar{Y}) \operatorname{Trace}((X - \bar{X})' (X - \bar{X})),$$

Conditional on Y the second term is fixed (i.e. non-random)

and can be dropped:

$$T_{Go} = \frac{1}{2}U'U + c_0 = \frac{1}{2}U'_M U_M + c_0 \propto SSU.$$

- Why do SSU/SSUw work?
 How could they beat "optimal" score, Wald and LR tests???
- Cox and Hinkley, *Theoretical Statistics*, 1974:
 - * Optimality of the score, Wald and LR tests: locally most powerful, but only for ...;
 o/w, no uniformly most power (unbiased) (UMPU) test!
 - * If we knew β , then

 $T_{MP} = \beta' U$, but ...

- * Try max_b b'U s.t. $Var(b'U) = b'I_F b = 1$?
- We estimate T_{MP} by $T_{EMP} = \hat{\beta}'_M U.$

$$- T_{EMP} \approx SSUw = U' \text{Diag}(I_F)^{-1}U \text{ because}$$
$$\hat{\beta}_M = I_{M,d}^{-1}U_M + O_p(m^{-1}), \qquad U = U_M.$$
(4)

- How about estimating β by $\hat{\beta}$? $T_{EMP,J} = \hat{\beta}' U \approx U' I_F^{-1} U$, which is ...

- Result 2: SSU = kernel machine regression(KMR) (Wu et al 2010, 2011, *AJHG*) if a suitable kernel (or design matrix) is used.
 - KMR (Kwee et al 2008, AJHG; Wu et al 2010, AJHG): use a semi-parametric regression model

Logit
$$\Pr(Y_i = 1) = \beta_0 + h(X_{i1}, ..., X_{ik}),$$
 (5)

h(.) is an unknown function to be estimated. The form of h(.) is determined by a user-specified positive and semi-definite (psd) kernel function K(.,.): by the representer theorem (Kimeldorf and Wahba 1971), $h_i = h(X_i) = \sum_{j=1}^n \gamma_j K(X_i, X_j)$ with some $\gamma_1, ..., \gamma_n$.

- To test H_0 : $h = (h_1(X_1), ..., h_n(X_n))' = 0$. let $K = (K(X_i, X_j)), \gamma = (\gamma_1, ..., \gamma_n)'$, then $h = K\gamma$. Assume h as subject-specific random effects: $E(h) = 0, Cov(h) = \tau K$.

$$H_0 = H'_0$$
: $\tau = 0$.
Score test for H'_0 :

$$Q = (Y - \bar{Y}1)'K(Y - \bar{Y}1) = SSU$$

for H_0'' : b = 0 in

Logit
$$\Pr(Y=1) = b_0 + Zb$$

with K = ZZ'.

Result 3: SSU = genomic distance based regression (GDBR) (Wessel and Schork 2006, AJHG) if a suitable distance metric (or design matrix) is used.

$$F = \frac{tr(\hat{Y}'\hat{Y})}{tr(R'R)} = \frac{tr(\hat{Y}\hat{Y}')}{tr(RR')} = \frac{tr(HYY'H)}{tr((I-H)YY'(I-H))}$$
$$= \frac{tr(HGH)}{tr((I-H)G(I-H))} \propto SSU$$

for $H_0'': b = 0$ in

Logit
$$\Pr(Y=1) = b_0 + Zb$$

with G = ZZ'.

- A side-product: KMR=GDBR=SSU if K = G = ZZ'.
- Result 4: SSU ≈ C-alpha test (Neale et al 2011, *PLoS Genet*) Recall: SSU = Goeman's EB test; Assume β = (β₁, ..., β_k)' ~ N(0, τ^I), test H₀: τ² = 0. Both Goeman's and C-alpha tests: a homogeneity test!
- Remark: weighting can be used,
 - 1) as in wSum, weight $\propto 1/MAF$;
 - 2) functional prediction, e.g. by SIFT,...

	(0,1/	0, 2, 2, 2	-, -/ -, -	/ =, =/ =)	, , , , , , , , , , , , , , , , , , , ,		
		# of neutral RVs					
Tests	0	4	8	16	32		
UminP	.489	.479	.452	.365	.318		
Score	.599	.538	.491	.380	.276		
CMC	.365	.296	.283	.189	.182		
wSum	.369	.297	.287	.191	.200		
Sum	.342	.312	.315	.258	.239		
aSum	.350	.323	.325	.258	.243		
SSU	.603	.624	.635	.581	.574		
KMR	.611	.630	.644	.597	.590		
C-alpha-P	.629	.650	.668	.607	.598		

Power: OR = (3, 1/3, 2, 2, 2, 1/2, 1/2, 1/2); with LD.

I Ower . Only one causal five with Off—5.								
Test		# of neutral RVs						
	8	16	32	64	96	128		
UminP	.696	.629	.556	.496	.479	.461		
Sum	.365	.263	.160	.096	.088	.086		
aSum	.447	.314	.215	.152	.130	.126		
KBAC	.629	.483	.330	.193	.128	.103		
PWST	.665	.533	.405	.280	.211	.174		
EREC	.685	.545	.424	.272	.197	.184		
SSU	.710	.664	.580	.520	.470	.427		
aSSU	.736	.685	.628	.561	.518	.481		
aSPU	.707	.683	.645	.615	.592	.571		

Power: only one causal RV with OR=5:

Example

1000 Genome Project, http://www.1000genomes.org/ "The genomes of about 2500 unidentified people from about 25 populations around the world will be sequenced using next-generation sequencing technologies. The results of the study will be freely and publicly accessible to researchers worldwide."

June 2011 Data Release: "Genotypes for 1094 individuals for the May 2011 snp calls from the 20101123 sequence and alignment release of the 1000 genomes project has now been made."

• The 1000 Genomes Project (2010) A map of human genome variation from populationscale sequencing. Nature 467:1061-73.

- Data (08/2010): 283 Europeans; 174 Africans (AFR)
- RVs: defined here with MAF 1-5%; CVs: defined here with MAF > 5%
- Chr 1:

EUR: 894,828 SNVs; AFR: 1,279,571 SNVs; Common: 694,329 SNVs; 146,378 RVs; 478,241 CVs; 69,710 others

MAF distributions:
EUR: (Q1, Q2, Q3)=(.0053, .0424, .2014)
AFR: (Q1, Q2, Q3)=(.0115, .0431, .1609)
PCs based on CVs or RVs:

1st PC

26-1

y5[1:283, 1]

26-2

26 - 3

- Population stratification: Spurious disease-RV association due to race/ethnic groups as confounders;
- Many methods proposed for GWAS. Use PC's to adjust;
- Example: randomly drawn from the sample data, "Cases": 90% Europeans + 10% Africans; Controls: 10% Europeans + 90% Africans;

Type I	errors	at α	= 0.05:
--------	--------	-------------	---------

Tests	No PC	1 PC	$5 \ \mathrm{PCs}$	$10 \ \mathrm{PCs}$
UminP	.417	.069	.069	.075
Score	.812	.089	.079	.081
Sum	.899	.046	.044	.052
SSU	.057	.057	.054	.061

Power at $\alpha = 0.05$: randomly chose 4 causal SNPs						
Tests	No PC	1 PC	5 PCs	10 PCs		
	log ($\mathrm{DR} \sim U$	$(-\log 4, l$	$\log 4)$		
UminP	.377	.381	.380	.389		
Score	.359	.357	.357	.362		
Sum	.295	.289	.291	.300		
SSU	.421	.422	.422	.431		
	lo	g OR \sim	$U(0, \log$	4)		
UminP	.719	.717	.721	.725		
Score	.678	.665	.667	.666		
Sum	.659	.652	.654	.657		
SSU	.686	.683	.684	.687		

Power at $\alpha = 0.05$: 10 causal SNPs							
Tests	No PC	1 PC	$5 \ \mathrm{PCs}$	10 PCs			
	log ($\mathrm{DR} \sim U$	$(-\log 3, l$	$\log 3)$			
UminP	.582	.581	.578	.582			
Score	.629	.623	.623	.634			
Sum	.380	.383	.385	.388			
SSU	.633	.638	.639	.651			
	$\log \mathrm{OR} \sim U(0, \log 1.5)$						
UminP	.462	.460	.464	.466			
Score	.408	.405	.412	.413			
Sum	.617	.612	.619	.616			
SSU	.536	.530	.533	.525			

Discussion

- Pooled association tests perform well only if 1) no opposite association directions and 2) no or few non-associated RVs. Not likely!
- SSU test in general is powerful. But may lose power with too many non-associated RVs.
- No test is uniformly most powerful! The identity (or construction) of a more powerful test depends on the unknown truth (of the association pattern).
- Adaptive tests are needed!
- An **exciting** topic!

Acknowledgement: This research was supported by NIH and an **IHI Seed Grant**.

My collaborators: Dr Xiaotong Shen, Dr Saonli Basu, Dr Weihua Guan, Yiwei Zhang and other students.

> You can download our papers from http://www.biostat.umn.edu/rrs.php

Thank you!