Testing for Disease-Rare Variant Association with Sequence Data

Wei Pan¹

¹Division of Biostatistics, School of Public Health

University of Minnesota

Oct 28, 2011

Outline

- Introduction: problem
 No data preprocessing; genotypes called.
- Review some existing and new methods Pooled association tests, e.g., Sum test; Newer ones: aSum, SSU tests.
- Example data: 1000 Genome Project
- Main refs:

Pan (2009, Genet Epi), Han and Pan (2010, Hum Hered), Basu and Pan (2011, Genet Epi), Pan and Shen (2011, Genet Epi), ...

Introduction

• Single Nucleotide Polymorphism (SNP) or Variant (SNV)

DNA seq 1 - AAGCCTA

DNA seq 2 - AAGCTTA

two alleles, C and T; 3 genotypes: CC, TT, CT;

SNP: a minor allele freq (MAF) $\geq 5\%$ (or 1%).

SNV: less frequent variant or rare variant (RV) with MAF < 1%.

• Genome-wide association studies (GWAS):
Genome-wide tag SNPs (1 M) are measured as markers for each subject;

Target: common disease—common variant (CD-CV) association; Ultimate goal: to detect *causal* CVs.

• GWAS: a success!?
As of **10/5/11** (or 01/19/11 or 9/24/09 or 11/24/08), the NIH

Catalog of Published Genome-Wide Association Studies "includes **1030** (or 791 or 396 or 202) publications and **5108** (or 3939 or 1760 or 435) SNPs" that are associated with some phenotypes, such as prostate cancer, diabetes, bipolar disorder...

- But ... explain only a **small** proportion of heritability! Willer et al (2009): BMI; n = 3287 and 45018 for stages 1 and 2; identified 8 loci, explaining 0.84% of phenotype variance; genetic heritability 40-70%.
- Possibilities: polygenic (small) effects; G-G and G-E interactions; other variants (e.g. CNV); RVs; ...
- PCSK9 gene (Kotowski et al 2006): some RVs associated with **lower** plasma levels of LDL-C; some RVs associated with **higher** plasma levels of LDL-C;
- Next-generation sequencing (NGS):

Sequence (SNVs) of whole exome or genome for each subject; Target: common disease—RV association

- Most common study design: case-control; n in hundreds, then thousands, then ?
- Analysis unit

GWAS: single SNPs; more multi-SNP analyses?

NGS: multiple RVs, e.g. in a candidate gene or region;

• Data:

```
SNP2
                SNP3
Obs
     Y SNP1
                     ... SNPk
       CT
1
            AG
                 CG
                         AC
     1
     1 TT
         AG GG ... AA
     1 CT
3
                     ... CC
            AA CG
1001
    0
      CT
            AG
                 CC ...
                         AC
1002 0 TT
            GG CC ... AC
1003 0 CC
            GG CC
                     ... CC
```

- A binary response: Y = 0 or 1; each SNP j is coded as $X_j = 0$, 1 or 2, # copies of minor alleles;
- Statistical question: any SNP associated with Y?
- Most popular test in GWAS: univariate or single SNP-based

- Should it be multivariate? e.g., k > 1 SNPs inside a **given** LD block or sliding window. Selection of LD block or window size: relevant, not trivial.
- For RVs: small MAF \Longrightarrow univariate tests ... $n=1000, \text{MAF}=1\% \Longrightarrow \#(\text{minor alleles}) \approx 20;$ $n=1000, \text{MAF}=0.1\% \Longrightarrow \#(\text{minor alleles}) \approx 2;$ Design matrix X: almost all 0's!
- RVs: small MAF \Longrightarrow aggregation! combine multiple RVs!

Existing methods

- Single-locus (or SNP-by-SNP or univariate) analysis: GWAS
 - Model: $Y \sim SNP_i$

Logit
$$Pr(Y_i = 1) = \beta_{M,0j} + X_{ij}\beta_{M,j},$$
 (1)

- $H_{0,j}: \beta_{M,j} = 0 \text{ for each } j = 1, ..., k$ $\Longrightarrow p_j.$
- Combining: $UminP = min(p_1, p_2, ..., p_k)$ or ... Need to do multiple test adjustment!
- Model (1): as a 2×3 table; Cochran-Armitage trend test.

- Multivariate (or global or joint) analysis:
 - Model: $Y \sim SNP_1 + ... + SNP_k$

Logit
$$\Pr(Y_i = 1) = \beta_0 + \sum_{j=1}^k X_{ij}\beta_j,$$
 (2)

- H_0 : $\beta_1 = ... = \beta_k = 0$
- Use the score, Wald or LR test:

$$T_W = \hat{\beta}' V^{-1} \hat{\beta}, T_S = U' V_U^{-1} U \sim \chi_k^2 \text{ under } H_0;$$

$$V = Cov(\hat{\beta}), V_U = Cov(U);$$

Possibly large DF = k.

- Hotelling's T^2 test: closely related to the score test.

- Pooled association tests: aggregation; Sum test
 - Working (and incorrect) assumption: $\beta_1 = ... = \beta_k \equiv \beta_c$.
 - Model:

Logit
$$\Pr(Y_i = 1) = \beta_{0,c} + \sum_{j=1}^k X_{ij}\beta_c = \beta_{0,c} + X_{i,c}\beta_c,$$
 (3)

- $H_{0,c}$: $\beta_c = 0$
- Apply the score, Wald or LR test $T_W = \hat{\beta}_c^2/V_c \sim \chi_1^2$ under $H_{0,c}$.
- Feature: DF=1; no multiple testing!
- Correct test size: $H_0 \Longrightarrow H_{0,c}!$
- Closely related to CMC (Li and Leal 2008), weighted sum (Madsen and Browning 2009) tests:

$$\bigvee_{j=1}^k X_{ij} \approx \sum_{j=1}^k X_{ij}$$

Power: OR=(2, 2, 2, 2, 2, 2, 2, 2); No LD; n = 500 + 500; MAFs $\sim U(.001, .01)$ for controls;

Test	# of neutral RVs					
	0	4	8	16	32	64
UminP	.441	.336	.296	.222	.175	.117
Score	.746	.632	.595	.471	.332	.245
CMC	.938	.853	.777	.616	.399	.211
wSum	.940	.846	.782	.618	.424	.267
Sum	.951	.875	.808	.673	.484	.313
aSum	.933	.858	.780	.669	.499	.313
SSU	.756	.702	.694	.626	.499	.423
KMR(Linear)	.762	.711	.699	.631	.509	.438
C-alpha	.771	.712	.688	.627	.484	.378

Power: OR = (3, 3, 2, 2, 2, 1/2, 1/2, 1/2); No LD; n = 500 + 500; MAFs $\sim U(.001, .01)$ for controls;

Test	# of neutral RVs					
	0	4	8	16	32	
UminP	.607	.532	.481	.417	.346	
Score	.869	.772	.721	.632	.483	
CMC	.661	.544	.456	.336	.204	
wSum	.659	.548	.459	.335	.228	
Sum	.682	.566	.465	.365	.258	
aSum	.854	.745	.684	.574	.430	
SSU	.895	.835	.815	.774	.696	
KMR	.897	.842	.824	.783	.707	
C-alpha	.906	.844	.823	.775	.674	

Newer methods

- Summary: 1) pooled association tests (Sum, CMC, wSum) do not perform well if there are opposite association directions!
- A strategy: decide the association directions first!

 An adaptive Sum (aSum) test: Han and Pan (2010);

 More works:... But ...
- Equally (or more?) importantly, pooled association tests (Sum, CMC, wSum) do not perform well if there are many non-associated RVs.

Presence of non-associated RVs: expected!

• A strategy: SSU test!

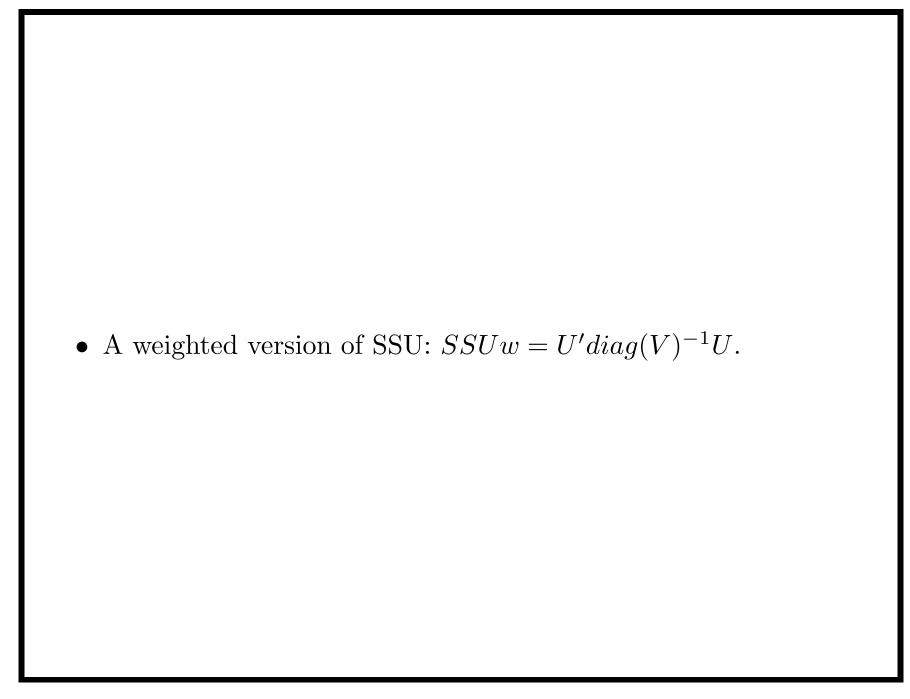
- Recall $LRT \approx Wald's \approx Score = U'V^{-1}U$, $U = \sum_{i=1}^{m} X_i(Y_i - \bar{Y})$, $V = Cov(U) = I_F = \bar{Y}(1 - \bar{Y})(X - \bar{X})'(X - \bar{X})$.
- New tests:

$$SSU = U'U \approx SSB = \sum_{j=1}^{k} \hat{\beta}_{M,j}^{2},$$

- Null distributions for $Q = U'W^{-1}U$:
 - 1) W = I and $W = \text{Diag}(V_M)$ in the above;
 - 2) $Q \sim \sum_{j=1}^{k} c_j \chi_1^2$, where c_j 's are the eigen values of $V_M W^{-1}$;
 - 3) Zhang (2005, JASA): approximate by $a\chi_d^2 + b$ with

$$a = \frac{\sum_{j=1}^{k} c_j^3}{\sum_{j=1}^{k} c_j^2}, \quad b = \sum_{j=1}^{k} c_j - \frac{\left(\sum_{j=1}^{k} c_j^2\right)^2}{\sum_{j=1}^{k} c_j^3}, \quad d = \frac{\left(\sum_{j=1}^{k} c_j^2\right)^3}{\left(\sum_{j=1}^{k} c_j^3\right)^2}.$$

4)
$$Pr(SSU > s|H_0) \approx Pr\left(\chi_d^2 > (s-b)/a\right)$$
.



- Result 1: SSU = Goeman's EB test for high-dim data:
- Goeman's test:
 - Set-up: "large k, small n" as for microarray data;
 - Assume $\beta = (\beta_1, ..., \beta_k)'$ random: $E(\beta) = 0, Cov(\beta) = \tau^2 I.$
 - Test H_{0,τ^2} : $\tau^2 = 0$ by a score test.
 - For logistic regression:

$$T_{Go} = \frac{1}{2}(U'U - \text{Trace}(I_F)), \quad \text{where } U = X'(Y - \bar{Y}),$$

and $I_f = Cov(U) = \bar{Y}(1 - \bar{Y})(X - \bar{X})'(X - \bar{X}).$

$$T_{Go} = \frac{1}{2} (Y - \bar{Y})' X X' (Y - \bar{Y}) - \frac{1}{2} \bar{Y} (1 - \bar{Y}) \operatorname{Trace}((X - \bar{X})' (X - \bar{X})),$$

Conditional on Y the second term is fixed (i.e. non-random)

and can be dropped:

$$T_{Go} = \frac{1}{2}U'U + c_0 = \frac{1}{2}U'_M U_M + c_0 \propto SSU.$$

- Why do SSU/SSUw work?How could they beat "optimal" score, Wald and LR tests???
- Cox and Hinkley, Theoretical Statistics, 1974:
 - * Optimality of the score, Wald and LR tests: locally most powerful, but only for ...; o/w, no uniformly most power (unbiased) (UMPU) test!
 - * If we knew β , then $T_{MP} = \beta' U$, **but** ...
 - * Try $\max_b b'U$ s.t. $Var(b'U) = b'I_Fb = 1$?
- We estimate T_{MP} by $T_{EMP} = \hat{\beta}'_{M}U$.

 $-T_{EMP} \approx SSUw = U' \text{Diag}(I_F)^{-1}U$ because

$$\hat{\beta}_M = I_{M,d}^{-1} U_M + O_p(m^{-1}), \qquad U = U_M. \tag{4}$$

– How about estimating β by $\hat{\beta}$?

$$T_{EMP,J} = \hat{\beta}'U \approx U'I_F^{-1}U$$
, which is ...

- Result 2: SSU = kernel machine regression(KMR) (Wu et al 2010, 2011, AJHG) if a suitable kernel (or design matrix) is used.
 - KMR (Kwee et al 2008, AJHG; Wu et al 2010, AJHG): use a semi-parametric regression model

Logit
$$Pr(Y_i = 1) = \beta_0 + h(X_{i1}, ..., X_{ik}),$$
 (5)

- h(.) is an unknown function to be estimated. The form of h(.) is determined by a user-specified positive and semi-definite (psd) kernel function K(.,.): by the representer theorem (Kimeldorf and Wahba 1971), $h_i = h(X_i) = \sum_{j=1}^n \gamma_j K(X_i, X_j)$ with some $\gamma_1, ..., \gamma_n$.
- To test H_0 : $h = (h_1(X_1), ..., h_n(X_n))' = 0$. let $K = (K(X_i, X_j)), \gamma = (\gamma_1, ..., \gamma_n)'$, then $h = K\gamma$.

Assume h as subject-specific random effects:

$$E(h) = 0$$
, $Cov(h) = \tau K$.

 $H_0 = H_0'$: $\tau = 0$.

Score test for H'_0 :

$$Q = (Y - \bar{Y}1)'K(Y - \bar{Y}1) = SSU$$

for H_0'' : b = 0 in

Logit
$$Pr(Y = 1) = b_0 + Zb$$

with K = ZZ'.

• Result 3: SSU = genomic distance based regression (GDBR) (Wessel and Schork 2006, AJHG) if a suitable distance metric (or design matrix) is used.

$$F = \frac{tr(\hat{Y}'\hat{Y})}{tr(R'R)} = \frac{tr(\hat{Y}\hat{Y}')}{tr(RR')} = \frac{tr(HYY'H)}{tr((I-H)YY'(I-H))}$$
$$= \frac{tr(HGH)}{tr((I-H)G(I-H))} \propto SSU$$

for H_0'' : b = 0 in

Logit
$$Pr(Y=1) = b_0 + Zb$$

with G = ZZ'.

- A side-product: KMR=GDBR=SSU if K = G = ZZ'.
- Result 4: SSU \approx C-alpha test (Neale et al 2011, *PLoS Genet*) Recall: SSU = Goeman's EB test; Assume $\beta = (\beta_1, ..., \beta_k)' \sim N(0, \tau^I)$, test H_0 : $\tau^2 = 0$. Both Goeman's and C-alpha tests: a homogeneity test!
- Remark: weighting can be used,
 - 1) as in wSum, weight $\propto 1/MAF$;
 - 2) functional prediction, e.g. by SIFT,...

Power: OR = (3, 1/3, 2, 2, 2, 1/2, 1/2, 1/2); with LD.

	# of neutral RVs					
Tests	0	4	8	16	32	
UminP	.489	.479	.452	.365	.318	
Score	.599	.538	.491	.380	.276	
CMC	.365	.296	.283	.189	.182	
wSum	.369	.297	.287	.191	.200	
Sum	.342	.312	.315	.258	.239	
aSum	.350	.323	.325	.258	.243	
SSU	.603	.624	.635	.581	.574	
KMR	.611	.630	.644	.597	.590	
C-alpha-P	.629	.650	.668	.607	.598	

Power: only one causal RV with OR=5:

Test	# of neutral RVs					
	8	16	32	64	96	128
UminP	.696	.629	.556	.496	.479	.461
Sum	.365	.263	.160	.096	.088	.086
aSum	.447	.314	.215	.152	.130	.126
KBAC	.629	.483	.330	.193	.128	.103
PWST	.665	.533	.405	.280	.211	.174
EREC	.685	.545	.424	.272	.197	.184
SSU	.710	.664	.580	.520	.470	.427
aSSU	.736	.685	.628	.561	.518	.481
aSPU	.707	.683	.645	.615	.592	.571

Example

• 1000 Genome Project, http://www.1000genomes.org/
"The genomes of about 2500 unidentified people from about 25
populations around the world will be sequenced using
next-generation sequencing technologies. The results of the
study will be freely and publicly accessible to researchers
worldwide."

June 2011 Data Release: "Genotypes for 1094 individuals for the May 2011 snp calls from the 2010-11-23 sequence and alignment release of the 1000 genomes project has now been made."

• The 1000 Genomes Project (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061-73.

- Data (08/2010): 283 Europeans; 174 Africans (AFR)
- RVs: defined here with MAF 1-5%; CVs: defined here with MAF > 5%
- Chr 1:

EUR: 894,828 SNVs; AFR: 1,279,571 SNVs;

Common: 694,329 SNVs; 146,378 RVs; 478,241 CVs; 69,710

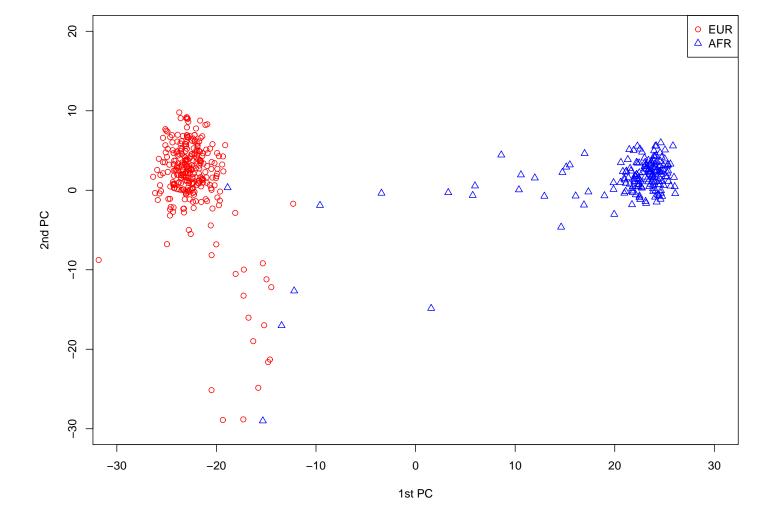
others

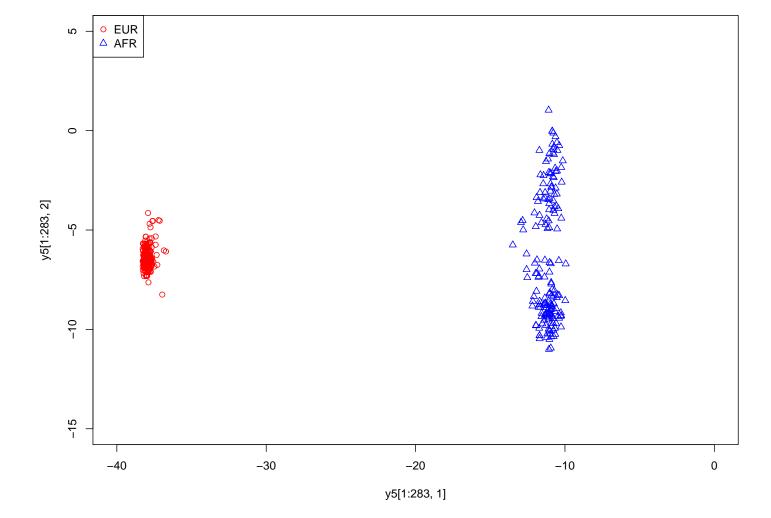
• MAF distributions:

EUR: (Q1, Q2, Q3) = (.0053, .0424, .2014)

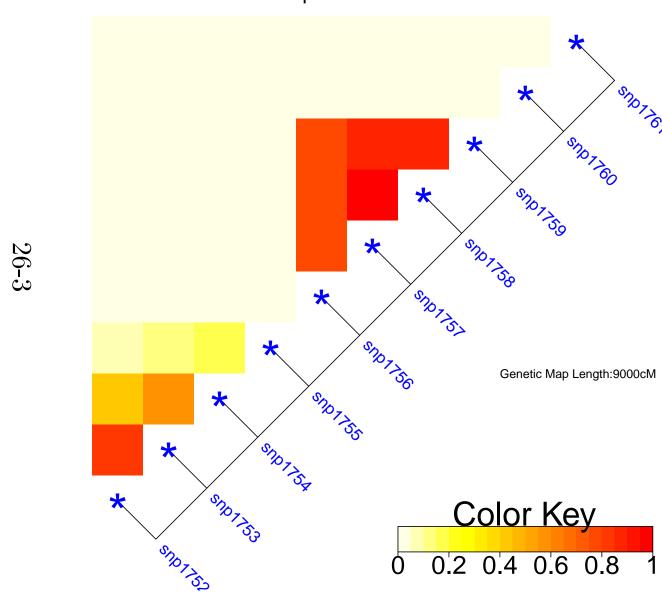
AFR: (Q1, Q2, Q3) = (.0115, .0431, .1609)

PCs based on CVs or RVs:





snp1752:1761



- Population stratification:

 Spurious disease-RV association due to race/ethnic groups as confounders;
- Many methods proposed for GWAS. Use PC's to adjust;
- Example: randomly drawn from the sample data,

"Cases": 90% Europeans + 10% Africans;

Controls: 10% Europeans + 90% Africans;

Type I errors at $\alpha = 0.05$:

Tests	No PC	1 PC	5 PCs	10 PCs
UminP	.417	.069	.069	.075
Score	.812	.089	.079	.081
Sum	.899	.046	.044	.052
SSU	.057	.057	.054	.061

Power at $\alpha = 0.05$: randomly chose 4 causal SNPs

Tests	No PC	1 PC	5 PCs	10 PCs			
	log ($\log OR \sim U(-\log 4, \log 4)$					
UminP	.377	.381	.380	.389			
Score	.359	.357	.357	.362			
Sum	.295	.289	.291	.300			
SSU	.421	.422	.422	.431			
	lo	$\log OR \sim U(0, \log 4)$					
UminP	.719	.717	.721	.725			
Score	.678	.665	.667	.666			
Sum	.659	.652	.654	.657			
SSU	.686	.683	.684	.687			

Power at $\alpha = 0.05$: 10 causal SNPs							
Tests	No PC	1 PC	5 PCs	10 PCs			
	log ($\log OR \sim U(-\log 3, \log 3)$					
UminP	.582	.581	.578	.582			
Score	.629	.623	.623	.634			
Sum	.380	.383	.385	.388			
SSU	.633	.638	.639	.651			
	$\log OR \sim U(0, \log 1.5)$						
UminP	.462	.460	.464	.466			
Score	.408	.405	.412	.413			
Sum	.617	.612	.619	.616			
SSU	.536	.530	.533	.525			

Discussion

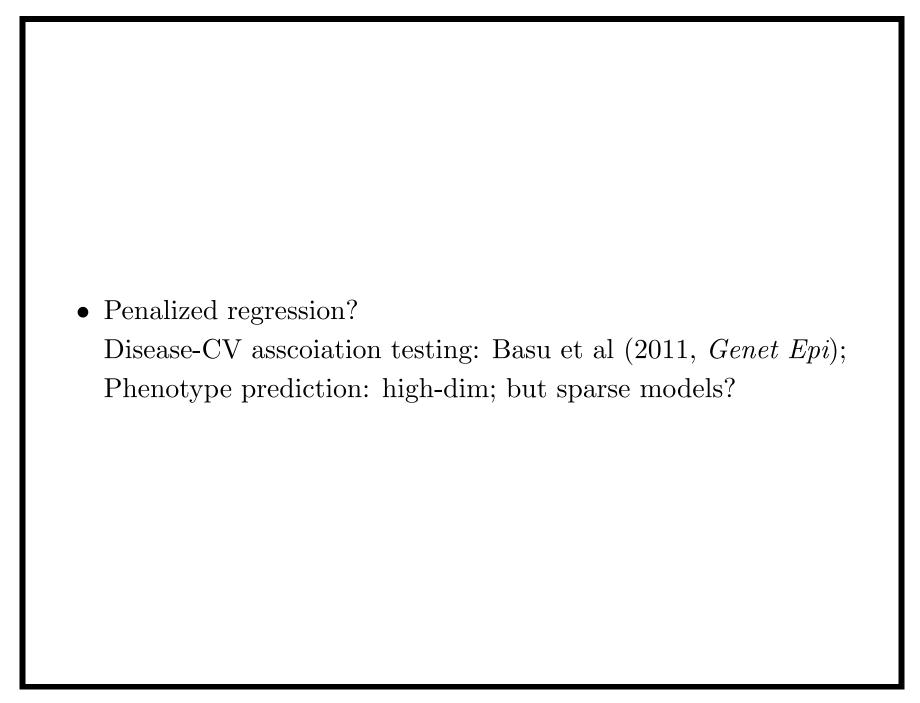
• Pooled association (burden) tests perform well only if 1) no opposite association directions and 2) no or few non-associated RVs.

Not likely!

- SSU test in general is powerful.

 But may lose power with too many non-associated RVs.
- No test is uniformly most powerful!

 The identity (or construction) of a more powerful test depends on the unknown truth (of the association pattern).
- Adaptive tests are needed!
- An **exciting** topic!



Acknowledgement: This research was supported by NIH and a UM-IHI Seed Grant.

My collaborators: Dr Xiaotong Shen, Dr Saonli Basu, Dr Weihua Guan, Yiwei Zhang and other students.

You can download our papers from http://www.sph.umn.edu/biostatistics/research/reports.asp

Thank you!