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Outline

• Introduction: problem

No data preprocessing; genotypes called.

• Review some existing and new methods

Pooled association tests, e.g., Sum test;

Newer ones: aSum, SSU tests.

• Example data: 1000 Genome Project

• Main refs:

Pan (2009, Genet Epi), Han and Pan (2010, Hum Hered), Basu

and Pan (2011, Genet Epi), Pan and Shen (2011, Genet Epi), ...
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Introduction

• Single Nucleotide Polymorphism (SNP) or Variant (SNV)

DNA seq 1 – AAGCCTA

DNA seq 2 – AAGCTTA

two alleles, C and T; 3 genotypes: CC, TT, CT;

SNP: a minor allele freq (MAF) ≥ 5% (or 1%).

SNV: less frequent variant or rare variant (RV) with MAF

< 1%.

• Genome-wide association studies (GWAS):

Genome-wide tag SNPs ( 1 M) are measured as markers for

each subject;

Target: common disease–common variant (CD-CV) association;

Ultimate goal: to detect causal CVs.

• GWAS: a success!?

As of 10/5/11 (or 01/19/11 or 9/24/09 or 11/24/08), the NIH
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Catalog of Published Genome-Wide Association Studies

“includes 1030 (or 791 or 396 or 202) publications and 5108

(or 3939 or 1760 or 435) SNPs” that are associated with some

phenotypes, such as prostate cancer, diabetes, bipolar

disorder...

• But ... explain only a small proportion of heritability!

Willer et al (2009): BMI; n = 3287 and 45018 for stages 1 and

2; identified 8 loci, explaining 0.84% of phenotype variance;

genetic heritability 40-70%.

• Possibilities: polygenic (small) effects; G-G and G-E

interactions; other variants (e.g. CNV); RVs; ...

• PCSK9 gene (Kotowski et al 2006):

some RVs associated with lower plasma levels of LDL-C;

some RVs associated with higher plasma levels of LDL-C;

• Next-generation sequencing (NGS):
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Sequence (SNVs) of whole exome or genome for each subject;

Target: common disease–RV association

• Most common study design: case-control;

n in hundreds, then thousands, then ?

• Analysis unit

GWAS: single SNPs; more multi-SNP analyses?

NGS: multiple RVs, e.g. in a candidate gene or region;
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• Data:

Obs Y SNP1 SNP2 SNP3 ... SNPk

1 1 CT AG CG ... AC

2 1 TT AG GG ... AA

3 1 CT AA CG ... CC

......

1001 0 CT AG CC ... AC

1002 0 TT GG CC ... AC

1003 0 CC GG CC ... CC

......

• A binary response: Y = 0 or 1;

each SNP j is coded as Xj = 0, 1 or 2, # copies of minor

alleles;

• Statistical question: any SNP associated with Y ?

• Most popular test in GWAS: univariate or single SNP-based
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• Should it be multivariate?

e.g., k > 1 SNPs inside a given LD block or sliding window.

Selection of LD block or window size: relevant, not trivial.

• For RVs: small MAF =⇒ univariate tests ...

n = 1000, MAF=1% =⇒ #(minor alleles) ≈ 20;

n = 1000, MAF=0.1% =⇒ #(minor alleles) ≈ 2;

Design matrix X : almost all 0’s!

• RVs: small MAF =⇒ aggregation!

combine multiple RVs!
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Existing methods

• Single-locus (or SNP-by-SNP or univariate) analysis: GWAS

– Model: Y ∼ SNPj

Logit Pr(Yi = 1) = βM,0j + XijβM,j , (1)

– H0,j : βM,j = 0 for each j = 1, ..., k

=⇒ pj .

– Combining: UminP = min(p1, p2, ..., pk) or ...

Need to do multiple test adjustment!

– Model (1): as a 2 × 3 table; Cochran-Armitage trend test.
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• Multivariate (or global or joint) analysis:

– Model: Y ∼ SNP1 + ... + SNPk

Logit Pr(Yi = 1) = β0 +

k
∑

j=1

Xijβj , (2)

– H0: β1 = ... = βk = 0

– Use the score, Wald or LR test:

TW = β̂′V −1β̂, TS = U ′V −1

U U ∼ χ2

k under H0;

V = Cov(β̂), VU = Cov(U);

Possibly large DF = k.

– Hotelling’s T 2 test: closely related to the score test.
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• Pooled association tests: aggregation; Sum test

– Working (and incorrect) assumption: β1 = ... = βk ≡ βc.

– Model:

Logit Pr(Yi = 1) = β0,c +
k

∑

j=1

Xijβc = β0,c + Xi,cβc, (3)

– H0,c: βc = 0

– Apply the score, Wald or LR test

TW = β̂2

c /Vc ∼ χ2

1
under H0,c.

– Feature: DF=1; no multiple testing!

– Correct test size:

H0 =⇒ H0,c!

– Closely related to CMC (Li and Leal 2008), weighted sum

(Madsen and Browning 2009) tests:

∨k
j=1

Xij ≈
∑k

j=1
Xij
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Power: OR=(2, 2, 2, 2, 2, 2, 2, 2); No LD; n = 500 + 500; MAFs

∼ U(.001, .01) for controls;

Test # of neutral RVs

0 4 8 16 32 64

UminP .441 .336 .296 .222 .175 .117

Score .746 .632 .595 .471 .332 .245

CMC .938 .853 .777 .616 .399 .211

wSum .940 .846 .782 .618 .424 .267

Sum .951 .875 .808 .673 .484 .313

aSum .933 .858 .780 .669 .499 .313

SSU .756 .702 .694 .626 .499 .423

KMR(Linear) .762 .711 .699 .631 .509 .438

C-alpha .771 .712 .688 .627 .484 .378

11



Power: OR = (3, 3, 2, 2, 2, 1/2, 1/2, 1/2); No LD; n = 500 + 500;

MAFs ∼ U(.001, .01) for controls;

Test # of neutral RVs

0 4 8 16 32

UminP .607 .532 .481 .417 .346

Score .869 .772 .721 .632 .483

CMC .661 .544 .456 .336 .204

wSum .659 .548 .459 .335 .228

Sum .682 .566 .465 .365 .258

aSum .854 .745 .684 .574 .430

SSU .895 .835 .815 .774 .696

KMR .897 .842 .824 .783 .707

C-alpha .906 .844 .823 .775 .674
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Newer methods

• Summary: 1) pooled association tests (Sum, CMC, wSum) do

not perform well if there are opposite association directions!

• A strategy: decide the association directions first!

An adaptive Sum (aSum) test: Han and Pan (2010);

More works:... But ...

• Equally (or more?) importantly, pooled association tests (Sum,

CMC, wSum) do not perform well if there are many

non-asscoiated RVs.

Presence of non-asscoiated RVs: expected!

• A strategy: SSU test!

13



• Recall LRT ≈ Wald′s ≈ Score = U ′V −1U ,

U =
∑m

i=1
Xi(Yi − Ȳ ),

V = Cov(U) = IF = Ȳ (1 − Ȳ )(X − X̄)′(X − X̄).

• New tests:

SSU = U ′U ≈ SSB =
k

∑

j=1

β̂2

M,j ,

• Null distributions for Q = U ′W−1U :

1) W = I and W = Diag(VM ) in the above;

2) Q ∼
∑k

j=1
cjχ

2

1
, where cj ’s are the eigen values of VMW−1;

3) Zhang (2005, JASA): approximate by aχ2

d + b with

a =

∑k

j=1
c3

j
∑k

j=1
c2

j

, b =
k

∑

j=1

cj −

(

∑k

j=1
c2

j

)2

∑k

j=1
c3

j

, d =

(

∑k

j=1
c2

j

)3

(

∑k

j=1
c3

j

)2
.

4) Pr(SSU > s|H0) ≈ Pr
(

χ2

d > (s − b)/a
)

.
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• A weighted version of SSU: SSUw = U ′diag(V )−1U .
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• Result 1: SSU = Goeman’s EB test for high-dim data:

• Goeman’s test:

– Set-up: “large k, small n” as for microarray data;

– Assume β = (β1, ..., βk)′ random:

E(β) = 0, Cov(β) = τ2I.

– Test H0,τ2 : τ2 = 0 by a score test.

– For logistic regression:

TGo = 1

2
(U ′U − Trace(IF )), where U = X ′(Y − Ȳ ),

and If = Cov(U) = Ȳ (1 − Ȳ )(X − X̄)′(X − X̄).

TGo =
1

2
(Y − Ȳ )′XX ′(Y − Ȳ ) −

1

2
Ȳ (1 − Ȳ )Trace((X − X̄)′(X − X̄)),

Conditional on Y the second term is fixed (i.e. non-random)
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and can be dropped:

TGo =
1

2
U ′U + c0 =

1

2
U ′

MUM + c0 ∝ SSU.

– Why do SSU/SSUw work?

How could they beat “optimal” score, Wald and LR tests???

– Cox and Hinkley, Theoretical Statistics, 1974:

∗ Optimality of the score, Wald and LR tests:

locally most powerful, but only for ...;

o/w, no uniformly most power (unbiased) (UMPU) test!

∗ If we knew β, then

TMP = β′U , but ...

∗ Try maxb b′U s.t. V ar(b′U) = b′IF b = 1?

– We estimate TMP by

TEMP = β̂′

MU.
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– TEMP ≈ SSUw = U ′Diag(IF )−1U because

β̂M = I−1

M,dUM + Op(m
−1), U = UM . (4)

– How about estimating β by β̂?

TEMP,J = β̂′U ≈ U ′I−1

F U , which is ...
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• Result 2: SSU = kernel machine regression(KMR) (Wu et al

2010, 2011, AJHG) if a suitable kernel (or design matrix) is

used.

– KMR (Kwee et al 2008, AJHG; Wu et al 2010, AJHG): use

a semi-parametric regression model

Logit Pr(Yi = 1) = β0 + h(Xi1, ..., Xik), (5)

h(.) is an unknown function to be estimated. The form of

h(.) is determined by a user-specified positive and

semi-definite (psd) kernel function K(., .): by the

representer theorem (Kimeldorf and Wahba 1971),

hi = h(Xi) =
∑n

j=1
γjK(Xi, Xj) with some γ1,...,γn.

– To test H0: h = (h1(X1), ..., hn(Xn))′ = 0.

let K = (K(Xi, Xj)), γ = (γ1, ..., γn)′, then h = Kγ.

Assume h as subject-specific random effects:

E(h) = 0, Cov(h) = τK.
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H0 = H ′

0
: τ = 0.

Score test for H ′

0
:

Q = (Y − Ȳ 1)′K(Y − Ȳ 1) = SSU

for H ′′

0
: b = 0 in

Logit Pr(Y = 1) = b0 + Zb

with K = ZZ ′.

20



• Result 3: SSU = genomic distance based regression (GDBR)

(Wessel and Schork 2006, AJHG) if a suitable distance metric

(or design matrix) is used.

F =
tr(Ŷ ′Ŷ )

tr(R′R)
=

tr(Ŷ Ŷ ′)

tr(RR′)
=

tr(HY Y ′H)

tr((I − H)Y Y ′(I − H))

=
tr(HGH)

tr((I − H)G(I − H))
∝ SSU

for H ′′

0
: b = 0 in

Logit Pr(Y = 1) = b0 + Zb

with G = ZZ ′.
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• A side-product: KMR=GDBR=SSU if K = G = ZZ ′.

• Result 4: SSU ≈ C-alpha test (Neale et al 2011, PLoS Genet)

Recall: SSU = Goeman’s EB test;

Assume β = (β1, ..., βk)′ ∼ N(0, τ I), test H0: τ2 = 0.

Both Goeman’s and C-alpha tests: a homogeneity test!

• Remark: weighting can be used,

1) as in wSum, weight ∝ 1/MAF;

2) functional prediction, e.g. by SIFT,...
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Power: OR = (3, 1/3, 2, 2, 2, 1/2, 1/2, 1/2); with LD.

# of neutral RVs

Tests 0 4 8 16 32

UminP .489 .479 .452 .365 .318

Score .599 .538 .491 .380 .276

CMC .365 .296 .283 .189 .182

wSum .369 .297 .287 .191 .200

Sum .342 .312 .315 .258 .239

aSum .350 .323 .325 .258 .243

SSU .603 .624 .635 .581 .574

KMR .611 .630 .644 .597 .590

C-alpha-P .629 .650 .668 .607 .598
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Power: only one causal RV with OR=5:

Test # of neutral RVs

8 16 32 64 96 128

UminP .696 .629 .556 .496 .479 .461

Sum .365 .263 .160 .096 .088 .086

aSum .447 .314 .215 .152 .130 .126

KBAC .629 .483 .330 .193 .128 .103

PWST .665 .533 .405 .280 .211 .174

EREC .685 .545 .424 .272 .197 .184

SSU .710 .664 .580 .520 .470 .427

aSSU .736 .685 .628 .561 .518 .481

aSPU .707 .683 .645 .615 .592 .571
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Example

• 1000 Genome Project, http://www.1000genomes.org/

“The genomes of about 2500 unidentified people from about 25

populations around the world will be sequenced using

next-generation sequencing technologies. The results of the

study will be freely and publicly accessible to researchers

worldwide.”

June 2011 Data Release: “Genotypes for 1094 individuals for

the May 2011 snp calls from the 2010-11-23 sequence and

alignment release of the 1000 genomes project has now been

made.”

• The 1000 Genomes Project (2010) A map of human genome

variation from population-scale sequencing. Nature

467:1061-73.
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• Data (08/2010): 283 Europeans; 174 Africans (AFR)

• RVs: defined here with MAF 1-5%;

CVs: defined here with MAF > 5%

• Chr 1:

EUR: 894,828 SNVs; AFR: 1,279,571 SNVs;

Common: 694,329 SNVs; 146,378 RVs; 478,241 CVs; 69,710

others

• MAF distributions:

EUR: (Q1, Q2, Q3)=(.0053, .0424, .2014)

AFR: (Q1, Q2, Q3)=(.0115, .0431, .1609)

PCs based on CVs or RVs:
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• Population stratification:

Spurious disease-RV association due to race/ethnic groups as

confounders;

• Many methods proposed for GWAS.

Use PC’s to adjust;

• Example: randomly drawn from the sample data,

“Cases”: 90% Europeans + 10% Africans;

Controls: 10% Europeans + 90% Africans;
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Type I errors at α = 0.05:

Tests No PC 1 PC 5 PCs 10 PCs

UminP .417 .069 .069 .075

Score .812 .089 .079 .081

Sum .899 .046 .044 .052

SSU .057 .057 .054 .061
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Power at α = 0.05: randomly chose 4 causal SNPs

Tests No PC 1 PC 5 PCs 10 PCs

log OR ∼ U(− log 4, log 4)

UminP .377 .381 .380 .389

Score .359 .357 .357 .362

Sum .295 .289 .291 .300

SSU .421 .422 .422 .431

log OR ∼ U(0, log 4)

UminP .719 .717 .721 .725

Score .678 .665 .667 .666

Sum .659 .652 .654 .657

SSU .686 .683 .684 .687
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Power at α = 0.05: 10 causal SNPs

Tests No PC 1 PC 5 PCs 10 PCs

log OR ∼ U(− log 3, log 3)

UminP .582 .581 .578 .582

Score .629 .623 .623 .634

Sum .380 .383 .385 .388

SSU .633 .638 .639 .651

log OR ∼ U(0, log 1.5)

UminP .462 .460 .464 .466

Score .408 .405 .412 .413

Sum .617 .612 .619 .616

SSU .536 .530 .533 .525
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Discussion

• Pooled association (burden) tests perform well only if 1) no

opposite association directions and 2) no or few non-associated

RVs.

Not likely!

• SSU test in general is powerful.

But may lose power with too many non-associated RVs.

• No test is uniformly most powerful!

The identity (or construction) of a more powerful test depends

on the unknown truth (of the association pattern).

• Adaptive tests are needed!

• An exciting topic!
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• Penalized regression?

Disease-CV asscoiation testing: Basu et al (2011, Genet Epi);

Phenotype prediction: high-dim; but sparse models?
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