
Polygenic testing and two-sample testing with
high-dimensional data

Wei Pan

Division of Biostatistics, School of Public Health, University of Minnesota,
Minneapolis, MN 55455

Shanghai, Nov 2014
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I Introduction: problem.

I Part 1: Polygenic testing
ISC-Poly vs aSPU

I Part 2: 2-sample tests for high-dim data
Review: some existing tests;
SPU/aSPU
Comparison, theory

I Application in neuroimaging?
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Introduction

I Problem:
I Given: a binary disease indicator Yi for subject i ; a group of of

(genome-wide) genetic variants (SNPs) (additively) coded as
Xi = (Xi1, ...,Xik)

′ with Xij = 0, 1 or 2; i = 1, ..., n << k.
I Q: any association between Yi and Xi?
I Approaches: global testing.

I Polygenic testing: Xi genome-wide; 100s–1000s genes.
Why? missing heritability from genome-wide association
studies (GWAS);
Any association?

I Example: the International Schizophrenia Consortium (ISC)
(2009, Nature)



I Goal: to maximize the power of a test
I Logistic reg model:

Logit[Pr(Yi = 1)] = β0 +
k∑

j=1

Xijβj .

or, for j = 1, ..., k,

Logit[Pr(Yi = 1)] = βM,j0 + XijβM,j .

I H0: β = (β1, ..., βk)′ = 0, or βM = (βM,1, ..., βM,k)′ = 0.
I Remark: other phenotypes or covariates can be

accommodated.
I The score vector U = (U1, ...,Uk)′ and its covariance:

U =
n∑

i=1

(Yi − Ȳ )Xi ,

V = Cov(U|H0) = Ȳ (1− Ȳ )
n∑

i=1

(Xi − X̄ )(Xi − X̄ )′.



Some existing tests

I Five global tests (Pan 2009, Genetic Epi) for k < n:

TScore = U ′V−1U,

TSSU = U ′U =
k∑

j=1

U2
j ,

TSSUw = U ′diag(V )−1U =
k∑

j=1

U2
j /Vjj ,

TUminP =
k

max
j=1

U2
j /Vjj ,

TSum = 1′U/
√

1′V 1 =
k∑

j=1

Uj/
√

1′V 1,

where Vjj = Var(Uj).



I Variance components tests:
Sum of Squared Score (SSU) test (Pan 2009): assuming
β1,..., βk ∼ F (0, τ2), H0: τ2 = 0,
TSSU = U ′U =

∑k
j=1 U2

j .
SSU test: equivalent to KMR (Liu et al 2008) with K = XX ′

(Pan 2011), i.e. SKAT with no weighting and a linear kernel
(Wu et al 2011); C-alpha (Neal et al 2011), an EB test
(Goeman et al 2006), GDBR/MDMR (Schork et al), ...

I UminP test: TUminP = maxk
j=1 U2

j /Vjj ,

close to TmaxU = maxk
j=1 |Uj |

I A challenge: no uniformly most powerful test!



I Adaptive tests: with weights ζ = (ζ1, ..., ζk)′,

TG = ζ ′U =
k∑

j=1

ζjUj ,

I aSum (Han and Pan 2010): ζj = −1 (or 1) if β̂M,j < 0 (or
> 0) and p-value pj < 0.1;

I PWST (Zhang et al 2011): ζj = 2(pj − 0.5);
I EREC (Lin and Tang 2011): ζj = β̂M,j ± d .



I Note: β̂M = Diag(V )−1U + Op(1/n),
1) If |β̂M | is large, ζ ≈ β̂M ∝ U =⇒ EREC ≈ SSU;
2) If |β̂M | is small, ζ ≈ ±d =⇒ EREC ≈ Sum;

I ...

I Key: how to choose ζ? Is any given choice of ζ sufficiently
adaptive?
Our answers:



New Tests: SPU and aSPU

I ζj = f (Uj) = Uγ−1
j for γ ≥ 1;

I SPU tests: for a γ ≥ 1,

TSPU(γ) =
k∑

j=1

Uγ
j .

TSPU(∞) ∝ lim
γ→∞

 k∑
j=1

|Uj |γ
1/γ

=
k

max
j=1

|Uj |.

I Special cases:
SPU(1) = Sum;
SPU(2) = SSU;
SPU(∞) = maxU ≈ UminP;

I Intuition in the choice of γ:
1) the more sparse the signals, the larger γ;
2) if (most) associations in one direction, then use an odd γ.



I Our experience: often SPU(8) ≈ SPU(16) ≈ SPU(∞);
If SPU(γ) ≈ SPU(∞), then no need to increase γ.

I In parctice, how to choose γ?
choose the one giving the most significant p-value?

I Use an adaptive SPU (aSPU) test:

TaSPU = min
γ∈Γ

PSPU(γ),

where PSPU(γ) is the p-value of SPU(γ), and
Γ = {1, 2, ..., 8,∞}.

I Computing: one loop of permutations or parameteric
bootstrap is sufficient to calculate the p-values of SPU(γ) for
γ ∈ Γ and aSPU tests!

I Ref: Pan et al (2014, Genetics)



Connections

I The ISC-Poly test:
1) Divide data D = D1 ∪ D2;
2) wj = wj(D1) = β̂M,j I (pj < PT ) from the marginal model;
3) si =

∑
j wj(D1)Xij(D2);

4) t-test on si ’s with i ∈ D2;

I The ISC-Poly is the same as the Sum (Poly-Sum) test on H ′
0:

α1 = 0 in

Logit[Pr(Yi = 1)] = α0 + α1

∑
j=1

wjXij ,

with the new genotype score wjXij and i ∈ D2.

I Can construct Poly-SSU, Poly-UminP, ...

I Key: use a half of the sample to construct weights wj ’s; use
the other half for hypothesis testing.
sample splitting is not efficient!



I Some algebra (and asymptotics) shows

TPoly(PT ) ∝
∑

j Uj(D1)Uj(D2)I (pj(D1) < PT )

Var(Uj(D1))
,

I Better to use

TtSSUw(PT ) =

∑
j Uj(D)Uj(D)I (pj(D) < PT )

Var(Uj(D))
,

I Thresholding and inverse-variance weighting are not really
effective =⇒

TSSU =
∑

j

Uj(D)Uj(D),

or even better, SPU(γ), and aSPU!

I aSSU (Pan and Shen 2011, Genetic Epi; Fan 1997, JASA) vs
aSPU (Pan et al 2014, Genetics)...



Simulations

Empirical Type I error rate (for OR = 1) and power (for a > 1) for
polygenic tests (with sample splitting) and SPU/aSPU tests
(without sample splitting) for 1000 independent SNPs, including
k1 causal SNPs with ORj ’s ∼ U(1, a).



Null k1 = 20 k1 = 50 k1 = 100
Test PT a = 1 a = 1.2 1.3 1.4 1.1 1.2 1.3 1.1 1.15 1.2

Poly-ISC 0.05 .044 .109 .344 .728 .056 .298 .769 .093 .240 .674
0.1 .053 .115 .299 .676 .057 .311 .767 .106 .284 .738
0.5 .041 .101 .258 .488 .078 .298 .731 .121 .377 .769

Poly-Sum 0.05 .044 .111 .344 .730 .056 .299 .769 .093 .240 .674
0.1 .053 .114 .299 .676 .057 .311 .768 .106 .284 .738
0.5 .042 .103 .258 .489 .078 .299 .731 .121 .377 .768

Poly-SSU 0.05 .046 .163 .610 .925 .066 .350 .887 .086 .228 .645
0.1 .041 .143 .593 .917 .072 .379 .896 .094 .253 .693
0.5 .030 .124 .584 .907 .062 .363 .906 .093 .284 .760

Poly-SSUw 0.05 .043 .144 .494 .845 .065 .306 .838 .074 .220 .595
0.1 .038 .113 .418 .781 .060 .319 .827 .078 .233 .631
0.5 .023 .053 .198 .398 .041 .179 .553 .091 .184 .525

Poly-UminP 0.05 .050 .134 .458 .787 .072 .191 .642 .066 .131 .364
0.1 .039 .123 .415 .751 .063 .202 .592 .064 .136 .326
0.5 .039 .097 .287 .590 .063 .166 .442 .066 .111 .241

SPU(1) .053 .139 .182 .296 .162 .439 .733 .490 .781 .946
SPU(2) .062 .234 .565 .819 .158 .657 .966 .327 .756 .981
SPU(4) .058 .364 .817 .984 .159 .763 .994 .292 .782 .986
SPU(8) .049 .348 .830 .982 .122 .630 .978 .166 .495 .918
SPU(16) .056 .308 .769 .961 .105 .465 .924 .114 .339 .744
SPU(32) .056 .293 .741 .950 .103 .413 .903 .110 .307 .682
SPU(∞) .058 .297 .737 .949 .109 .408 .887 .115 .307 .674

aSPU .055 .348 .806 .971 .203 .747 .992 .464 .877 .995



Example

I SAGE GWAS on alcohol dependence (Bierut et al 2010);
n = 1165 cases +1379 controls;
a total of 948,658 SNPs; 607,033 SNPs after QC;
None reseached the genome-wide significance by univariate
testing!

I Previous twin/familial studies showed heritability of alcohol
dependence!

I Any here?

I Use Plink to trim to 62,801 nearly uncorrelated SNPs
(r2 ≤ 0.1 with a sliding window of 200 SNPs and a step size
of 20 SNPs).

I Results: based on 10 million permutations!



Test PT p-value

Poly-ISC 0.01 0.0042
0.05 7.29× 10−5

0.10 5.04× 10−5

0.20 1.61× 10−5

0.30 5.85× 10−6

0.40 1.37× 10−6

0.50 1.23× 10−6

Bonferroni-adjusted p-value 8.64× 10−6

SPU(1) 5.12× 10−4

SPU(2) < 1× 10−7

SPU(3) 0.0433
SPU(4) < 1× 10−7

SPU(5) 0.1925
SPU(6) 6.54× 10−5

SPU(7) 0.3111
SPU(8) 0.0235
SPU(∞) 0.3383

aSPU 9.00× 10−7



Part 2: two-sample tests

I Set-up: two samples, {x1i , i = 1, 2, . . . , n1} and
{x2j , j = 1, 2, . . . , n2} with p > max{n1, n2}.
H0: µ1 = µ2. (Or more generally, H0: F1 = F2.)

I Sample means and covariance matrices: n = n1 + n2,
x̄k =

∑nk
i=1 xki/nk .

Sn =
∑2

k=1

∑nk
i=1 (xki − x̄k) (xki − x̄k)T /n.

I Bai and Saranadasa (1996):

Z =
n1n2

n1+n2
(x̄1 − x̄2)

T (x̄1 − x̄2)− trSn√
2(n+1)

n Bn

, (1)

Under H0, Z
D−→ N(0, 1).

I Key:

Mn = (x̄1 − x̄2)
T (x̄1 − x̄2)−

n1 + n2

n1n2
trSn. (2)



I Chen et al (2010, Ann Statist):

Tn =

∑n1
i 6=j x

T
1ix1j

n1(n1 − 1)
+

∑n2
i 6=j x

T
2ix2j

n2(n2 − 1)
− 2

∑n1
i=1

∑n2
j=1 xT

1ix2j

n1n2
, (3)

which is the terms after removing
∑nk

i=1 xT
kixki for k = 1, 2

from ‖x̄1 − x̄2‖2. Hence

Tn − ‖µ1 − µ2‖
2√

Var(Tn)

D−→ N(0, 1) (4)

as n −→∞ and p −→∞.

I Cai et al (2014, JRSS-B): δA = A(x̄1 − x̄2),

MA =
n1n2

n1 + n2
max

1≤i≤p

(δA
i )2

bii
, (5)

an asymptotic extreme value distribution.



I Chen et al (2014):

Ln(s) =

p∑
j=1

{
n (x̄1,j − x̄2,j)

2 − 1
}

I
{

n (x̄1,j − x̄2,j)
2 > λn(s)

}
,

(6)
with λn(s) = 2s log p as the thresholding level. Then

MLn = max
s∈(0,1−η)

Ln(s)− µ̂Ln(s),0

σ̂Ln(s),0
, (7)

with an asymptotic extreme value distribution.



I Our SPU tests:

U =
n1 + n2

n1n2
(x̄1 − x̄2) .

Then for a positive integer γ

SPU(γ) =

p∑
j=1

(x̄1,j − x̄2,j)
γ ,

SPU(∞) =
p

max
j=1

(
x̄1,j

σ1,j
−

x̄2,j

σ2,j

)2

.

I Remarks:
Chen et al (2010): ∼ SPU(2)=SSU;
Chen et al (2014): ∼ tSPU(2)=aSPU(2)=aSSU;
Cai et al (2014): ∼ SPU(∞).



Theorem for SPU tests

Let Γ be a set of finite positive integers. Under H0, we have

{σ(γ)−1(SPU(γ)− µ(γ)) : γ ∈ Γ}′ d−→ N(0, ξ),

and for x ∈ R,

P(nSPU(∞)− ap ≤ x) → exp

{
− 1√

π
exp

(
−x

2

)}
as n, p →∞, where ap = 2 log p − log log p and
n = n1n2/(n1 + n2).
Moreover, {σ(γ)−1(SPU(γ)− µ(γ)) : γ ∈ Γ} and nSPU(∞)− ap

are asymptotically independent.



Simulations

I Simulation set-ups follow Chen et al (2014).

I n1 = 30, n2 = 40, p = 200.

I Under H0, µ1 = µ2 = 0; under H1, µ1 = 0, and µ2 has
bp1−βc non-zero entries of equal value, which are uniformly
allocated among {1, 2, . . . , p}. β = 0, 0.1, 0.2, . . . , 0.9.

I The values of the non-zero entries are√
2r log p(1/n1 + 1/n2). r = 0.1, 0.2, 0.3, 0.4.

I Σ1 = Σ2 = Σ = (σij), where σij = ρ|i−j |. ρ = 0.6.

I Results:

I Based on 1000 replicates; all used permutations B = 1000

I Used true Ω = Σ−1 if needed.
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Figure: No data transformation
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Figure: Data transformation with Ω1/2
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Figure: Data transformation with Ω



Discussion

I Conclusion: aSPU test is promising (and general/flexible)

I Current work:
applied to real data;
develop an R package;

I Extensions:
Pathway analysis; ongoing ...
Multivariate (neuroimaging) traits-single SNP (Zhang et al
2014);
Multivariate traits-multiple SNPs; ongoing ...
To familial and/or longitudinal data; ongoing ...



Another Application

I To brain connectivity data: k >> n; Kim et al (2014).

I Problem: based on fMRI data, estimate a functional
connectivity (FC) network for each subject using marginal
correlations (i.e. sample covariance) or partial correlations
(i.e. precision matrix).

I Key Q: group comparisons; not many studies ...

I Example: a rs-fMRI dataset (Wozniak et al 2013);
Group 1: patients with fatal alcohol spectrum disorder
(FASD), n1 = 24;
Group 2: controls, n2 = 31;
N = 62 + 12 = 74 cortical and sub-cortical ROIs; k = 2701
possible edges;
Each subject measured at 180 time points;



Figure: Structural networks (from DTI); taken from Moo Chung’s
website at UW-Madison.



Table: P-values after adjusting for age and gender for the FASD data.

Test SPU(1) SPU(2) SPU(3) SPU(4) SPU(5) SPU(6) SPU(7) SPU(8) SPU(∞) aSPU

P-value 0.009 0.312 0.085 0.348 0.236 0.391 0.366 0.437 0.759 0.031

Test MDMR DiProPerm nbs(0.1) nbs(0.25) nbs(0.5) nbs(0.75) CharPath Eclust Eglob Eloc

P-value 0.468 - 0.009 0.017 0.064 0.081 0.673 0.862 0.919 0.925
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Figure: Sparse networks: empirical Type I error (for τ = 1) and power
(for τ < 1) based on 1000 simulations.
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