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Introduction

Problem: genomic discoveries
which of the G genes satisty a specified condition?

Problem 1: detecting differentially expressed (DE) genes based
on microarary expression data

Problem 2: detecting binding targets of a TF based on
ChIP-chip data

Features:

— Unsupervised learning/discovery: no or few known
cases/controls; e.g. cannot apply logistic regression; use
mixture model/clustering.

— Many genes/subjects: somewhat similar; borrow info.

— Data: high noise level.

Statistical problem: testing Hy ; vs H; ; for each geen i.




4 gene ¢ is equally expressed for Problem 1;
— Hy ;: gene 7 is not a target of the TF for Problem 2;
— Hj ;: opposite of Hy ; (i.e. gene ¢ is DE for Problem 1, is a
target for Problem 2 ).

Given microarray data =— Z;’s
Z;: a summary statistic against Hy ; for gene i;
e.g. a fold change, t-type statistic, or even p-value.

We transform Z; such that the null distribution of Z;’s (i.e. for

those genes satisfying Hy ;) is N(0,1).
e.g. If Z; = P; is a p-value, z; = o~ 1(1 — P;).

The null distribution may not be exactly N (0, 1), called
theoretical null, and hence may need to be estimated as
N (pg,00), called empirical null (Efron 2004, JASA)

From now on, we work with z;’s (i.e. transformed Z;’s).




Standard mixture model

Many references: Efron et al (2001, JASA); Newton et al
(2001, JCB);...

A hierarchical model:;

Prior probability: m9g =Prob(Hj ;) for any <.
a constant! common across the genes!

Null distr: f(z;|Ho;) = fo(2);

Non-null distr: f(z;|H1:) = f1(25);

Marginally, z;’s are iid from

f(zi) = mofo(zi) + (1 — mo) f1(2:),

a standard mixture model.

Key:

all the genes are treated equally and independently a priori;
reasonable?




e Inference:

1—m 1(2; T Z; 1(Z4
Pr(Hy lz) = 4 f%)z{)( b =1 Off(ozg)) > ﬁzogzig = LET.

Rank the genes based on their Pr(H; ;|z;) or LRT.

False discovery rate (FDR) estimation (Newton 2004,
Biostatsitics)
Decision rule: for any given cut-off value ¢, rejects Hy; if and
only if PT(H1,2-|zZ-) > 1— ¢, then
— ,[]_—PT(Hl ,L'|Z@')]1[P’I"(H1 ,L“Z,L')>1—C]
FD — 2. ’ ’
R( ) Z@ 1[PT‘(H1,Z'|ZZ')>1—C]

B #talse positives )
FDR=FE (#claimed positives )




Stratified mixture model

Reference: Pan (2005, Statistical Applications in Genetics and
Molecular Biology)

Known: the genes are annotated in K > 1 GO categories or
pathways, G1,....Gk.

known: the genes in the same group should be more similar to
each other than those from different groups!

How to take advantage?
treat the genes in different groups differently a priori.

Prior probability: w(()k) =Prob(Hy; |i € Gk).
NOT a constant; group-dependent!

Null distr: same as before; f(z;|Ho i) = fi(zi).

Non-null distr: group-specific; f(z;|H1i,7 € Gg) = fk)(zz)

Marginally, z;’s for those in G are iid as




f(zili € Gr) = m" folz) + (1= mg") 17 (20),

but the marginal distribution depends on k: genes from
different Gy have different distributions!

— treat genes differently a prior:

Inference: same as before except working on each Gi one by
one——-stratified analysis!

Efron (in press, AoAS): a general problem; theory.

A practical problem: depends on the choice of G’s
GO: thousands of the groups;

GO: DAG; hierarchical: higher level categories are more
general, while lower ones more specific

— trade-off: group homogeneity vs group size!

Hierarchical mixture model (Pan 2006, Applied Statistics)

Main ideas:




1) each GO category is a stratum;

2) borrowing information: parameters from a category are

related to that of its parents; shrinking its sample estimate
towards that of its parent!




Spatially correlated mixture model

A problem with the stratified mixtrue model: choice of G ’s.

Some argue that gene functions should be characterized by
some categories, rather, by their inter-relationships (Marcotte)
— gene networks

gene networks: many types; can be general here.

undirected graph: genes are nodes; an edge indicates “direct
relationship” between the two genes.

basic assumption: any two connected genes in a network are
more similar (i.e. more likely to satisfy or not satisfy Hy
together) than two random picks.

Prior probability: m; ¢ =Prob(Hy ;) for gene i.
Key: gene-specific!

Null distr: same; f(z;|Hoi) = fo(zi)-




Non-null distr: same; f(z;|H1,:) = f1(2:)-
Marginally z; is distributed as
fi(zi) = miofo(zi) + mif1(2),

Too many parameters m’'s = borrowing information!

have not used information in network yet!

Assume two latent Markov random fields
Xj = {xm-;i — 1, ceny G},

;5 = exp(x; j)/|exp(xio) + exp(z;1)] for j =0, 1.

x,: intrinsic Gaussian conditional autoregression (CAR) model
(Besag and Kooperberg 1995, B'ka)

2
1 Lo
i) ~ N (W 2 ies, Tl %) ’
where §;: indices for the neighbors of gene ©; m; = |d;].
neighborhoods: determined by a gene network!

A Bayesian implementation ... see Wei and Pan (RR




#2007-032)
used MCMUC; inference is based on posterior probabilities, e.g.

Pr(Hy ;|data).

a standard mixture model can be similarly implemented.

Originally proprosed by Fernandez and Green (2002, JRSS-B)

for spatial statistics; to avoid over-smoothing near “edges”.
applied to CGH data by Broet and Richardson (2006,
Bioinfo.): 1-dim smoothing over a chromosome to “change

point” detection.




An example

e Data: 3 replicates of ChIP-chip experiments for yeast S.
cerevisae by Lee et al (2002, Science); G ~ 6000
TF: GCN4; involved in response to amino acid starvation;
Used their p-values.

Positive (negative) control set: genes believed to be (not to be)
the transcriptional targets of GCN4; n = 80 (900).

compiled by Pokholok et al (2005, Cell); based on 3 sources of
data: a newer generation of ChIP-chip; gene expression; DNA

motif analysis).

Gene network: computationally constructed by Lee et al (2004,
Science).

two connected genes: functional linkage;

based on multiple data sources: gene expression,
protein-protein interaction, gene co-citation, gene fusion and




phylogentic profiles;

Used their ‘ConfidentNet’: 4681 nodes, 34000 edges.
summary of # direct neighbors: min=1, 25%=2, 50%=6,
75%=13, max=188.

Merged the data and network.

G = 4616 genes/nodes, 33432 edges;
positive control set: 66 genes;
negative control set: 770 genes;

Subnetwork with only control genes: Fig 1

clustering?

Evaluation: used only the two control sets to estimate
sensitivity and specificity = ROC curve.

Model fitting: Fig 2.




Standard:

A

f(z) = 0.91¢(2;0,.80%) + 0.037¢(z;; —1.98, .40%) +
0.058¢(2; 1.67,1.942),

Spatial:

f(z) = #io1d(2i;0,.632) + 70 20(2; —0.38,1.022) +
7%@1)1@5(2’7;; 075, 1532)

averages of 7%7;,0,17 7/'1'7;,0,2, 7/'1'7;,1,12 0500, 0.314 and 0.186.

e Statistical power: ROC curves in Fig 3
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Figure 1: Subnetwork consisting of positive control genes (dark ones)



Spatial Model

Aisuaq

Independence Model

Aisuaq
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Example genes

e ARGS: in the positive control set.

— posterior prob: =0.728 by the spatial model; =0.023 by the
standard model.

data in Lee et al (rich medium): binding ratio=1.02; used
here.

new data by Harbison et al (2004, Nature) (plus other
conditions: amino acid starvation and nutrition
deprivation): binding ratio=5.0; p-value=10"11.

ARGS: annotated in GO BP: amino acid biosynthetic
process, while GCNA4 is a transcriptional activator of amino

acid biosynthetic genes in response to amino acid
startvation. —a reasonable target.

How detected by the spatial model? ARGS is the direct
neighbor of 4 positive control genes but of none negative




control genes. —borrowing information: its prior prob was
estimated to be 0.733 by the spatial model, in contrast to
0.058 by the standard mdoel.

e TRP5: not in either control set.

Prior prob: 0.716 by the spatial model vs 0.058 by the
standard model;

Posterior prob: 0.723 vs 0.032;
binding ratio: =1.15 in Lee et al; =1.21 in Harbison et al;

Beyer et al (2006, PLoS Comp Biol): predicted to be a
target of GCN4;

Annotated in GO ‘BP: amino acid biosynthetic process’;

likely a target!

e ICY2: a positive gene; has 6 nighbors: 2 negative and none
positive.

— Prior prob: 0.668 by the spatial model vs 0.058 by the




standard model;

Posterior prob: 0.836 vs 0.548. —detected!

its two negative control genes: ADY2 and CRS5,

1) ADY2:
Prior prob: 0.08 by the spatial model vs 0.058 by the
standard model;

Posterior prob: 0.06 vs 0.02;

2) CRS5:

Prior prob: 0.12 by the spatial model vs 0.058 by the
standard model;

Posterior prob: 0.09 vs 0.02;

—Dboth negative neighbors are not false positives!




Simulation

e Starting from the same network as in the real data, simulated a
binary MRF for the latent states (i.e. whether Hp; holds or
not).

— Note: MRF not for x; as used in our model; we have a

mis-specified spatial model!

updated according to the conditional distribution; stopped
after 10 iterations, nearly stable;

4609 nodes, 33432 edge; 183 positive genes, and others
negatives.

accordingly simulated z; from the fitted model: ¢(0,0.63%)
for the null distr, ¢(0.75,1.53%) for non-null.

e Simulated 5 datasets: ROC curves, Fig 4

e Sensitivity to mis-specified network structures: Fig 5
randomly removed 5% edges;




randomly added 5% edges;

randomly removed 5% and then added 5% edges.

e Sensitivity to hyperparameters: Fig 6
prior for the precision of the mixture model; tried to use

non-informative priors when possible.
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- Spatial, G(.1,.1)
Spatial, G(.0001,.0001)
—— Independence, G(.1,.1)
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Discussion

e A (happy or productive?) marriage of statistical genomics and
spatial statistics.

e More comparisons, applications (e.g. to expression data) and

extensions.

— Wei and Li (2007, Bioinformatics): modeling the states of
Hj ; as a binary MRF; use ICM (Besag, 1986, JRSS-B).
give only point estimates; sensitivity to mis-specified
network?
alternative: fully Bayesian.

— Integrating multiple sources of data (Pan et al in press,
Statistica Sinica; Pan et al in press, PSB’08; Xie 2006 PhD
Thesis).

e Applicable: clustering genes with expression profiles for gene
function discovery.




stratified model: Pan (2006, Bioinformatics).
challenge here: computationally too demanding?
penalized methods: connection to Bayesian

e FExtensions:

— variable/gene selection in sample classifications/regression.

— variable/gene selection in sample clustering.

e My longer-term plan: apply to genome-wide association studies
with SNP data.

a high-dim problem;
are stat genomics and stat genetics converging?

E.g., using gene chromosome location, functional
groups/pathways or porotein-protein interaction networks...

Using linkage analysis as prior for association study (Roeder
et al 2006, AJHG) using weighted p-values.
Extending to incorporating network?
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