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Introduction

» Application 1: Polygenic testing

» Example: the International Schizophrenia Consortium (ISC)
(2009, Nature)

» n; = 3322 schizophrenia patients, n, = 3587 controls.

» p =~ 1 million SNPs (single nucleotide polymorphsims)
(coded 0, 1 or 2 for each).

» Any SNP associated with schizophrenia?
univariate testing;
high cost of multiple tests: genome-wide significance level
5x 1078;
None found!

» “Dark matter’ in genetics: missing heritability from
genome-wide association studies (GWAS);
Any association?
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Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder

The International Schizophrenia Consortium*

Schizophrenia is a severe mental disorder with a lifetime risk of
about 1%, characterized by hallucinations, delusions and cognitive
deficits, with heritability estimated at up to 80%'*. We performed a
genome-wide association study of 3,322 European individuals with
schizophrenia and 3,587 controls. Here we show, using two analytic
approaches, the extent to which commeon genetic variation underlies
the risk of schizophrenia. First, weimplicate the major histocompati-
I:nhly cumplex. Secmld. we provide molecular genetic evidence for a
to the risk of schizophrenia invol-
ving dmusmds af common alleles of very small effect. We show that
this component also contributes to the risk of bipolar disorder, but
not to several non-psychiatric diseases.
‘We genotyped the International Schizophrenia Consortium (I15C)
case-control sample for up to ~1 million single nucleotide poly-
morphisms (SNPs), augmented by imputed common HapMap
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Table 2, Supplementary Fig. 2 and section 5 and 6 in Supplemen-
tary Information).

The best imputed SNP, which reached genome-wide significance
(rs3130297, P= 478 1675 T allele odds ratio = 0.747, minor allele
frequency (MAF) = 0.114, 32.3 megabases (Mb)), was also in the
MHC, 7kilobases (kb) from NOTCH4, a gene with previously
reported associations with schizophrenia®. We imputed classacal
human leukocyte antigen (HLA) alleles; six were significant at
P< 1077, found on the ancestral European haplotype® (Table 1, Sup-
plementary Table 3 and section 3 in Supplementary Information).
However, it was not possible to ascribe the association to a specific
HLA allele, haplotype or region (Supplementary Table 3 and
Supplementary Fig. 4).

We exchanged GWAS summary results with the Molecular

Genetics of Schizophrenia (MGS) and SGENE consortia for geno-
brmand ERTThawdele 1= 103 T
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Figure S3: Manhattan plot of single SNP Cochran-Mantel-Haenszel (CMH) test
statistics, conditioning on the eight strata described above.

Figure: ISC (2009, Nature), Fig S3.
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Biological insights from 108
schizophrenia-associated genetic loci

Schizophrenia Working Group of the Psychiatric Genomics Consortium*

Schizophrenia is a highly heritable disorder. Genetic risk is mn.ferra‘] by a large of alleles, i i
a].'leles of small effect that might be by wide iation studies. Here we report a multi- stage schizo-
wide iation study of up to 36,989 cases and 113,075 controls. We identify 128 independent asso-
:utl.ons spa.nrung 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been
previously reported. Associations were enriched among genes expressed in brain, providing biological plausibility for
the findings. Ma.rry ﬁ.nd.lngs have the pmermal to provide ermre]y new lrlslghts into aetiology, but associations at DRD2
a.nd several genes )\ i 1 I crflumwn and potential therapeutic
T pk mn..,:mdare i it i hysiological b dent of genes expressed
in brain, :ssocultlans ‘were enriched among genm expre&.ai in tissues that lulve important mles in immunity, providing
support for the speculated link between the immune system and schizophrenia.
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Polygenic risk scores for
schizophrenia and bipolar
disorder predict creativity

Robert A Power!2, Stacy Steinberg!, Gyda Bjornsdottir!,
Cornelius A Rietveld3, Abdel Abdellaoui?, Michel M Nivard,
Magnus Joh , Tessel E Galesloot®, Jouke J Hottenga®,
Gonneke Willemsen*, David Cesarini’, Daniel ] Benjamin8,

Patrik K E Magnusson®, Fredrik Ullén!%, Henning Tiemeier!!,
Albert Hofman!!, Frank J A van Rooij!!, G Bragi Walters!,
Engilbert Sigurdsson!213, Thorgeir E Thorgeirsson!,

Andres Ingason!, Agnar Helgason!>13, Augustine Kong!,
Lambertus A Kiemeney®, Philipp Koellinger'4, Dorret I Boomsma“
Daniel Gudbjartsson’, Hreinn ! & Kari Stef:

with practical reasoning®!°. Furthermore, it has been suggested that
those less restrained by practical cognitive styles may have an advantage
in artistic occupations®. These results provide support for the notion
that creativity and psychiatric disorders, particularly schizophrenia and
bipolar disorder, share psychological attributes. However, whether and
to what degree this is due to shared environment or genetics has not
been assessed with modern genomic tools.

Creativity can be viewed in various ways'"'%, and, although it is a
difficult concept to define for scientific purposes, the creative person
is most often considered one who takes novel approaches requiring
cognitive processes that are different from prevailing modes of thought
or expression!!. Thinking differently from others is therefore a prereg-
uisite for creativity'!. Schizophrenia and bipolar disorder are disorders
of thoughts and emotions, which means that those affected show altera-
tions in cognitive and affective processing. Yet it is unclear whether the
cognitive deviations of psychiatric patients and of creative individuals

11,12
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PRSice: Polygenic Risk Score software

by Jack Euesden, Cathryn Lewis & Paul O'Reilly Q

Statistical Genetics Unit
King’s College London i

PRSice (pronounced 'precise’) is a software package for calculating, applying, evaluating and plotting the results of polygemc risk scores. PRSlce can
run at high-resolution to provide the best-fit PRS as well as provide results calculated at broad P-value results to
either (see below), can thin SNPs according to linkage disequilibrium and P-value ("clumping"), handles genotyped and imputed data, can calculate
and incorporate ancestry-informative variables, and can be applied across multiple traits in a single run.

Based on a permutation study we estimate a significance threshold of P = 0.001 for high-resolution PRS analyses - the work on this is included in our
Bioinformatics paper on PRSice.
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Introduction

» Application 2: functional connectivity (FC)

» Why? How?

» Problem: based on fMRI data, estimate a functional
connectivity (FC) network for each subject using Pearson's
(marginal) correlations (or partial correlations or ...).

» Key Q: group comparisons

» Existinng approaches: univariate testing; network summary
statistics; ...

Powerful /flexible enough?



Disrupted Functional Brain Connectome in Individuals

at Risk for Alzheimer’s Disease

Jinhui Wang, Xinian Zuo, Zhengjia Dai, Mingrui Xia, Zhilian Zhao, Xiaoling Zhao, Jianping Jia, Ying Han,
and Yong He

Original Investigation

Disruption of Cortical Association Networks in Schizophrenia
and Psychotic Bipolar Disorder

Justin T. Baker, MD, PhD; Avram J. Holmes, PhD; Grace A. Masters, MA; B. T. Thomas Yeo, PhD;
Fenna Krienen, PhD; Randy L. Buckner, PhD; Dost Ongiir, MD, PhD




Time series

Association matrix

Figure: Li and Wang 2015, Front. Neurosci., Fig 2.



Contical Association Networls Original Investigation Research

Figure 1. Functional Conmectivity Correlation Matrices in Patients and Controls
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Figure: Baker et al 2014, JAMA Psychiatry, Fig 1.



Figure 2. Functional Connectivity Differences Between Patients

and Controls
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Figure: Baker et al 2014, JAMA Psychiatry, Fig 2.
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Comparison of statistical tests for group differences in brain @c@sm
functional networks
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ARTICLE INFO ABSTRACT
Article histary: Brain functional connectivity has been studied by analyzing time series correlations in regional brain activities
Accepted 21 July 2014 based on resting-state IMRI data. Brain functional connectivity can be depicted as a network or graph defined

Avallable caline 30 july 2014 as aset of nodes linked by edges. Nodes represent brain regions and an edge measures the strength of functional

Figure: Our approach and results.




Problem formulation: two-sample testing

» Set-up: two samples, {Xy;,i =1,2,...,n} and
{Xoj,j =1,2,...,np} with p > max{ny, np}.
Ho: ptq = po. (Or more generally, Ho: F1 = Fy.)
» Sample means and covariance matrices: n = ny + ny,
Xk = D20 X/ ni.
S = Yh 1 X (Xu = Xe) (X = Xi) " /.
» Comment: here we assume X1 = X; not necessary.
» Classic Hotelling's (1951) T2-test,

Tu= (X %) (%4 %), )

—t-test (or z-test) if p = 1.
not working if p > n: S is singular; bad even p ~ n.



Review: some existing tests
» Bai and Saranadasa (1996, Statistica Sinica):

- (X1 = X2) " (X1 — Xz) — trS

2n(n+1) _ 2 7
\/(n—l)(n—i—Z) (tr52 —n 1 (trS) )
Under Ho, Tas — N(0, 1).
» Chen et al (2010, Ann Statist):
217&_/ XEXlJ Zl;é/ X27;X2J 27;1 Jnil Xz;le
Tcq = + -2 ,
n1(n1 — ].) ( ny — ].) niny
(2)

which results after removing -7, XX, for k = 1,2 from
H)_(l — )_(2H2. Hence

To — Iy — pol?
Var(T,) N(O 2 (3)

as n — o0 and p — .



Review: some existing tests

» Cai, Liu and Xia (2014, JRSS-B):

_ mnm 7 () —(f)>2/ )
TCLX = n + o lrgiagxp (Xl X2 Oijiy

with o (always) replaced by Sj;;
follows an asymptotic extreme value distribution under Hjy.



» Chen, Li and Zhong (2014):
: My (ol)  g())?
Tcrz(s Z {M<X1 - X3 ) /Uii_l}

i=1
/{nlnf‘;z (% - x()) /U,-,->)\p(s)},

T s)—[i
Tety —  max cLz(s) MTas(s)0.

56(0,1*?7) &TCLz(S),O

follows an asymptotic extreme value distribution under Hp.



> Srivastava and Du (1998, JMA):

o (R - %) D5 (R - %) - 2

Tsp = ny+ny n—2
V2(trR2 —p2/n) cp p

with Ds := diag(S), R := D3 /?SD3 "/, and
Cpn=1+1r R2/p3/2.



New: SPU and aSPU tests

» Sum of Powered Score (SPU) test: for a positive integer ~,
~ (g _ 0
sPu(y) = (X -x¢))". (4)
i=1

» Key: a larger v makes “the rich get richer”!
SPU(Y) ~ [1X1 = Xall, — K1 = Xalloe = max| X = X5'|

as (an even) v — 0.
> define

SPU(c0) = max ()_(gi) - )_(g))z/ai,-.

1<i<p

> Weighting: (X{" - X{")" = (X{" - )'(g')y‘l (% —%9).



New: SPU and aSPU tests

» Remarks:
Chen et al (2010): ~ SPU(2);
Cai et al (2014): ~ SPU(c0);
Chen et al (2014): ~ tSPU(2) ~ aSPU(2)=aSSU (Pan&
Shen 2011, Genet Epi); ~ PRS (Pan et al 2015, Genet Epi);
SPU(1) =Sum =Burden test in rare variant (RV) analysis ...
SPU(2) = KMR/SKAT = MDMR/PERMANOVA if ... (Pan
2011, Genet Epi)

» Q: which v to use?
» Key: no uniformly most powerful test.
» Define an adaptive SPU (aSPU) test:

aSPU = Telrr] 'DSPU('y)

eg,={1,2,...,8 00}.



Theorem for SPU tests

Let [ be a set of finite positive integers. Under Hp, we have

{o(1)"YSPU() — u(7)) : v € TY L N(0,€),

and for x € R,

P(nSPU(o0) — ap < x) — exp {—\}; exp (‘Z)}

as n,p — 0o, where a, = 2log p — loglog p and
n = n1n2/(n1 + HQ).
Moreover, {o(v)"}(SPU(y) — u(7)) : v € T’} and nSPU(cc) — a,
are asymptotically independent.



P-value calculations

» Asymptotics:

po = 1 B /s(s—yz odd 'yEF}T N(O’ Ro)ds’

—To<sy=<To

=1- N(0, Rg)dt
PE 1 [(t»y: even vern)T (07 E) ’

—oo<ty<TEg

Pmin ‘= min{pOapEapoo}7
Paspu = 1- (1 - pmin)3 .

» Permutations: permuting group labels.



Approximation for p(7)

Under the null hypothesis Hp : 1y = po,
(0,

2
2”/2 ZZ’/O d'('Y/2—d)1|nd 777 2 O 7 o(7);
M(V) = ZL7/2 7!
d=1 (d—1)!(|v/2]—d)!312l7/2]-1

i my; [v/2]-1
X Z, 1 nd ! \_y/zj d nlhm_dng’“> g +o

(Goree)

where my; is the third central moment of the random variablein
component i/ from group k, i.e., m; = E [(Xs(') — ug('))3



Approximation for o(~)

Under some regularity conditions and Hp : @y = po, when v =1,

o2(1) = (1 + 1) 17%1,

nm np

where 1 is a p-dimensional vector with all elements 1; for v > 2,

p
o?(y) ~ u(2y) = > D )P+
=1

2 ca+di _c+dx _c3+ds
(") 2175}0 9 %

Z atorta d1+d2+d3 loolcaldy ldo  dal2C1Hatditd
2c14c3+2di+dy3=y ny cilelesldildyds3!2
2c+c3+2dx+d3 =7
c1,62,d1,d2>0,c3+d3>0



Simulations

» Simulation set-ups follow Chen et al (2014).
» n = np =50, p=200.
» Under Hp, py = pp = 0; under Hy, p; = 0, and p, has

| p*~?| non-zero entries of equal value, which are uniformly
allocated among {1,2,...,p}. 5 =10,0.1,0.2,...,0.9.

» The values of the non-zero entries are

V2rlog p(1/n1 +1/np). r=0,0.1,0.2,0.3,0.4, ....
> X =X =X = (0j), where gj; = 0.6/,
» Results:

» Based on 1000 replicates; all used permutations B = 1000
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Application 1: polygenic testing

» WTCCC (Burton et al 2007, Nature);

» n; = 1868 bipolar disorder (BD) patients and n, = 2938
controls;

» After QC, p = 354,796 SNPs; using Plink to prune to
p = 42092 SNPs;

> There are strong polygenic effects (P =1 x 10712 for
WTCCC data, ISC 2009, Nature), we considered
chromosome-specific testing.
Permutation (asymptotic) p-values.



Chromosome (# SNPs)

Test 1 (3340) 4 (2617) 13 (1592) 18 (1421)
SPU(1) 0.6431 (0.6355)  0.0024 (0.0017)  0.0372 (0.0375)  0.3229 (0.3287)
SPU(2) | <0.0001 (<0.0001)  0.0173 (0.0144)  0.0292 (0.0260)  0.2868 (0.2882)
SPU(3) 0.7454 (0.7374)  0.0314 (0.0308)  0.1264 (0.1294)  0.1740 (0.1865)
SPU(4) | <0.0001 (<0.0001)  0.0268 (0.0270)  0.0025 (0.0009)  0.3315 (0.3526)
SPU(5) 0.7323 (0.7417)  0.3606 (0.3754)  0.3713 (0.3938)  0.2344 (0.2501)
SPU(6) | 0.0003 (<0.0001)  0.0407 (0.0270)  0.0040 (0.0001)  0.3864 (0.4477)
SPU(0) 0.1183 (0.1310)  0.1194 (0.1211)  0.0800 (0.0879)  0.0038 (0.0047)
aSPU | <0.0001 (<0.0001)  0.0118 (0.0116)  0.0128 (0.0013)  0.0187 (0.0140)
Lz 0.0004 (<0.0001)  0.1019 (0.0957)  0.0051 (0.0017)  0.0657 (0.0559)
CLX 0.1183 (0.1310)  0.1194 (0.1211)  0.0800 (0.0879)  0.0038 (0.0047)
BS <0.0001 (<0.0001)  0.0173 (0.0146)  0.0292 (0.0263)  0.2868 (0.2885)
cQ <0.0001 (<0.0001)  0.0173 (0.0148)  0.0292 (0.0268)  0.2868 (0.2896)
SD <0.0001 (<0.0001) 0.0098 (<0.0001) 0.1142 (<0.0001) 0.0969 (<0.0001)




Application 1: another dataset

» Pan et al (2015, Genet Epi);

» SAGE GWAS on alcohol dependence (Bierut et al 2010);
np = 1165 cases and ny = 1379 controls;
a total of 948,658 SNPs; 607,033 SNPs after QC;
None reached the genome-wide significance by univariate
testing!

» Previous twin/familial studies showed heritability of alcohol
dependence!

» Any here?

» Use Plink to trim to p = 62,801 nearly uncorrelated SNPs
(r? < 0.1 with a sliding window of 200 SNPs and a step size
of 20 SNPs).

» Results: based on 10 million permutations!



Test Pr p-value
PRS 0.01 0.0042
0.05 | 7.29 x 1075
0.10 | 5.04 x 107°
0.20 | 1.61 x 107>
0.30 | 5.85 x 107°
0.40 | 1.37 x 107°
0.50 | 1.23 x 107
Bonferroni-adjusted p-value 8.64 x 107°
SPU(1) 5.12 x 10~*
SPU(2) <1x1077
SPU(3) 0.0433
SPU(4) <1x1077
SPU(5) 0.1925
SPU(6) 6.54 x 107°
SPU(7) 0.3111
SPU(8) 0.0235
SPU(o0) 0.3383
aSPU 9.00 x 10~




Simulations: SNP data

Empirical Type | error rate (for OR = 1) and power (for a > 1) for
polygenic tests (with sample splitting) and SPU/aSPU tests
(without sample splitting) for 1000 independent SNPs, including
ki causal SNPs (among p = 1000 SNPs) with OR;'s ~ U(1, a).



Null ki1 =20 ki =50 ki = 100

Test Pr |a=1]a=12 13 14|11 12 13|11 115 1.2
PRS 0.05 | .044 .109 344 728 | .056 .298 .769 | .093 .240 .674

0.1 .053 115 299 676 | .057 311 .767 | .106 .284 .738

0.5 .041 .101 .258 .488 | .078 .298 .731 | .121 .377 .769
SPU(1) .053 139 182 296 | 162 439 733 | 490 .781 .946
SPU(2) .062 234 .565 .819 | .158 .657 .966 | .327 .756 .981
SPU(4) .058 .364 817 .984 | 159 763 .994 | 292 .782 .986
SPU(8) .049 .348 830 .982 | .122 630 .978 | .166 .495 918
SPU(16) .056 .308 769 961 | .105 .465 .924 | .114 339 .744
SPU(32) .056 .293 .741 950 | .103 .413 .903 | .110 .307 .682
SPU(0) .058 297 737 949 | 109 .408 .887 | .115 .307 .674
aSPU .055 .348 806 971 | .203 747 992 | 464 877 .995




Review: PRS test

» The Polygenic Risk Score (PRS) test:
1) Divide data D = Dy U Dy;
2) wj = wj(D1) = Bmjl(pj < Pt) from marginal models;
3) si = >_; wj(D1)X(D2);
4) t-test on s;'s with i € Dy;
» The ISC-PRS is the same as the Sum (Poly-Sum) test on H:
a1 =0in

Logit[Pr(Yi =1)] = ap + a1 Z w; Xij,
j=1
with the new genotype score w;Xj; and i € D;.
» Can construct Poly-SSU, Poly-UminP, ...

> Key: use a half of the sample to construct weights w;'s; use
the other half for hypothesis testing.
sample splitting is not efficient!



Some algebra (and asymptotics) shows

- > Ui(D1) Ui(D2)I(pi(Dy) < Pr)
PRS(Pt) X Var(U;(Dy)) )

Better to use

> Ui(D)U;(D)I(pi(D) < P1)
Tissuw(Pr) = Var(U;(D)) :

Thresholding and inverse-variance weighting are not really
effective —=

Tssu = Z Ui(D)U;(D),

or even better, SPU(), and aSPU!

aSSU (Pan and Shen 2011, Genetic Epi; Fan 1997, JASA) vs
aSPU (Pan et al 2014, Genetics)...



Application 2: functional connectivity (FC)

» Kim, Wozniak, Mueller, Shen & Pan (2014, Neurolmage);

» A rs-fMRI dataset (Wozniak et al 2013);
Group 1: patients, fatal alcohol spectrum disorder, n; = 24;
Group 2: controls, n, = 31;
74 (sub)cortical ROIs; p = 2701 possible edges;
Each subject measured at 180 time points;

» For each subject /, calculate a N x N sample correlation
matrix R;, then X; = vech(h(R;)) with h() as Fisher's
z-transformation.

» Then compare two groups of X;'s.

» Remarks: testing Hp: X1 = ¥,

Li & Chen (2012, Ann Statist): ~ SPU(2);
Cai, Liu & Xia (2013, JASA): SPU().



Table: P-values after adjusting for age and gender for the FASD data.

Test SPU(1) SPU(2) SPU(3) SPU(4) SPU(5) SPU(6) SPU(7) SPU(8) SPU(cc) aSPU
P-value | 0.009  0.312 0.085 0.348 0.236 0.391 0.366 0.437 0.759  0.031
Test MDMR nbs(0.1) nbs(0.25) nbs(0.5) nbs(0.75) CharPath  Eclust Eglob Eloc
P-value | 0.468 0.009 0.017 0.064 0.081 0.673 0.862 0.919 0.925
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Discussion

» Genetics
» can be generalized to GLMs with covariates, RVs, p < n (Pan
et al 2014, Genetics);
» extended to gene- and pathway-based association analysis
(Pan et al 2015, AJHG);
» extended to multiple traits (Zhang et al 2015, Neurolmage;
Kim et al 2016, Genetics),
> to that with only summary statistics (meta-analysis) (Kim et
al, 2015, Genet Epi; Kwak and Pan 2016a, 2016b,
Bioinformatics).
» Neuroimaging:
» generalized to using regularized cov and precision matrices
(Kim et al, 2015, Neurolmage: Clinical);
» neuroimaging genetics: WGCNA /module detection (Gao, Kim
& Pan 2017, Pacific Biocomputing Symposium; Kim & Pan
(to appear), Genet Epi).
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Figure 1 Whole-brain GWAS. (a) Voxel-wise genetic association analysis. This kind of analysis involves a genome-wide search at each vorel in the brain,
after aligning all subjects’ images to a commen template. (b) mendmg this method to ;!udy brain tcnneﬁicn; Jahanshad et al® described connectome-
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