Statistical genomics and spatial statistics:
Incorporating biological knowledge of
genes into analysis of genomic data

Wei Pan
(joint work with Peng Wei)
Division of Biostatistics, SPH
University of Minnesota

Dec 2007
Outline

- Problem
- Standard mixture model
- Stratified mixture model
- Spatially correlated mixture model
- Numerical Results: real and simulated data
- Discussion
Introduction

- Problem: genomic discoveries
 which of the G genes satisfy a specified condition?
- Problem 1: detecting differentially expressed (DE) genes based
 on microarray expression data
- Problem 2: detecting binding targets of a TF based on
 ChIP-chip data
- A related problem: prostate cancer (PC) screening by PSA
- Features:
 - Unsupervised learning/discovery: no or few known
 cases/controls; e.g. cannot apply logistic regression; use
 mixture model/clustering.
 - Many genes/subjects: somewhat similar; borrow info.
 - Data: high noise level.
• Statistical problem: testing $H_{0,i}$ vs $H_{1,i}$ for each gene i.
 - $H_{0,i}$: gene i is equally expressed for Problem 1;
 - $H_{0,i}$: gene i is not a target of the TF for Problem 2;
 - $H_{0,i}$: subject i does not have PC for Problem PC;
 - $H_{1,i}$: opposite of $H_{0,i}$ (i.e. gene i is DE for Problem 1, is a target for Problem 2, subject i has PC for Problem PC).

• Given microarray data $\implies Z_i$'s
 Z_i: a summary statistic against $H_{0,i}$ for gene i;
 e.g. a fold change, t-type statistic, or even p-value.

• We transform Z_i such that the null distribution of Z_i's (i.e. for those genes satisfying $H_{0,i}$) is $N(0, 1)$.
 e.g. If $Z_i = P_i$ is a p-value, $z_i = \Phi^{-1}(1 - P_i)$.

• The null distribution may not be exactly $N(0, 1)$, called theoretical null, and hence may need to be estimated as $N(\mu_0, \sigma_0)$, called empirical null (Efron 2004, JASA)
• From now on, we work with z_i’s (i.e. transformed Z_i’s).
Standard mixture model

- A hierarchical model:
- Prior probability: $\pi_0 = \text{Prob}(H_{0,i})$ for any i.
 a constant! common across the genes!
- Null distr: $f(z_i|H_{0,i}) = f_0(z_i)$;
- Non-null distr: $f(z_i|H_{1,i}) = f_1(z_i)$;
- Marginally, z_i’s are iid from
 $f(z_i) = \pi_0 f_0(z_i) + (1 - \pi_0) f_1(z_i)$,
 a standard mixture model.
- Key:
 all the genes are treated equally and independently \textit{a priori};
 reasonable?
• Inference:
 \[Pr(H_{1,i} | z_i) = \frac{(1-\pi_0)f_1(z_i)}{f(z_i)} = 1 - \frac{\pi_0f_0(z_i)}{f(z_i)} \propto \frac{f_1(z_i)}{f_0(z_i)} = LRT. \]
 Rank the genes based on their \(Pr(H_{1,i} | z_i) \) or LRT.

• False discovery rate (FDR) estimation (Newton 2004, Biostatsitics)
 Decision rule: for any given cut-off value \(c \), rejects \(H_{0i} \) if and only if \(Pr(H_{1,i} | z_i) > 1 - c \), then
 \[\widehat{FDR}(c) = \frac{\sum_i [1 - Pr(H_{1,i} | z_i)]1[Pr(H_{1,i} | z_i) > 1 - c]}{\sum_i 1[Pr(H_{1,i} | z_i) > 1 - c]}. \]
 \[FDR = E \left(\frac{\#\text{false positives}}{\#\text{claimed positives}} \right). \]
Stratified mixture model

• Reference: Pan (2005, Statistical Applications in Genetics and Molecular Biology)

• Known: the genes are annotated in $K > 1$ GO categories or pathways, $G_1, ..., G_K$.

 known: the genes in the same group should be more similar to each other than those from different groups!

• How to take advantage?

 treat the genes in different groups differently a priori.

• Prior probability: $\pi_0^{(k)} = \text{Prob}(H_{0,i} \mid i \in G_k)$.

 NOT a constant; group-dependent!

• Null distr: same as before; $f(z_i \mid H_{0,i}) = f_1(z_i)$.

• Non-null distr: group-specific; $f(z_i \mid H_{1,i}, i \in G_k) = f_1^{(k)}(z_i)$.

• Marginally, z_i’s for those in G_k are iid as
\[f(z_i| i \in G_k) = \pi_0^{(k)} f_0(z_i) + (1 - \pi_0^{(k)}) f_1^{(k)}(z_i), \]
but the marginal distribution depends on \(k \): genes from different \(G_k \) have different distributions!

\[\implies \text{treat genes differently \textit{a priori}} \]

- Inference: same as before except working on each \(G_k \) one by one—stratified analysis!
- Efron (in press, AoAS): a general problem; theory.
- Problem PC: use age-adjusted PSA!
 - According to NCI website:
 - A cut-off point for each 10-year age group;
 - For example, claimed normal (NCI website):
 - 1) if \(PSA < 2.4 \text{ ng/mL} \) for men < 50 year-old;
 - 2) if \(PSA < 6.5 \text{ ng/mL} \) for men \(\geq 70 \) year-old.
 - Why? PSA level increases with age.
– But still controversial.

• A practical problem: depends on the choice of G_k’s
 GO: thousands of the groups;
 GO: DAG; hierarchical: higher level categories are more
 general, while lower ones more specific
 \implies trade-off: group homogeneity vs group size!

• Hierarchical mixture model (Pan 2006, *Applied Statistics*)

• Main ideas:
 1) each GO category is a stratum;
 2) borrowing information: parameters from a category are
 related to that of its parents; shrinking its sample estimate
 towards that of its parent!
Spatially correlated mixture model

• A problem with the stratified mixture model: choice of G_k’s.

• Some argue that gene functions should be characterized by some categories, rather, by their inter-relationships (Marcotte) \implies gene networks

• gene networks: many types; can be general here.
 undirected graph: genes are nodes; an edge indicates “direct relationship” between the two genes.
 basic assumption: any two connected genes in a network are more similar (i.e. more likely to satisfy or not satisfy H_0 together) than two random picks.

• Prior probability: $\pi_{i,0} = \text{Prob}(H_{0,i})$ for gene i.
 Key: gene-specific!

• Null distr: same; $f(z_i|H_{0,i}) = f_0(z_i)$.
• Non-null distr: same; \(f(z_i|H_{1,i}) = f_1(z_i) \).

• Marginally \(z_i \) is distributed as
 \[
 f_i(z_i) = \pi_{i,0} f_0(z_i) + \pi_{i,1} f_1(z_i),
 \]

• Too many parameters \(\pi \)'s \(\implies \) borrowing information!
 have not used information in network yet!

• Assume two latent Markov random fields
 \[
 \mathbf{x}_j = \{x_{i,j}; i = 1, ..., G\},
 \]
 \[
 \pi_{i,j} = \exp(x_{i,j})/[\exp(x_{i,0}) + \exp(x_{i,1})] \text{ for } j = 0, 1.
 \]

• \(\mathbf{x}_j \): intrinsic Gaussian conditional autoregression (CAR) model
 (Besag and Kooperberg 1995, B’ka)
 \[
 x_{i,j}|x_{(-i),j} \sim N \left(\frac{1}{m_i} \sum_{l \in \delta_i} x_{l,j}, \frac{\sigma^2_{\delta_j}}{m_i} \right),
 \]
 where \(\delta_i \): indices for the neighbors of gene \(i \); \(m_i = |\delta_i| \).
 neighborhoods: determined by a gene network!

• A Bayesian implementation … see Wei and Pan (RR
used MCMC; inference is based on posterior probabilities, e.g.
\(\hat{Pr}(H_{0,i} | data) \).

a standard mixture model can be similarly implemented.

- Originally proposed by Fernandez and Green (2002, JRSS-B) for spatial statistics; to avoid over-smoothing near “edges”.

applied to CGH data by Broet and Richardson (2006, Bioinfo.): 1-dim smoothing over a chromosome to “change point” detection.
An example

- Data: 3 replicates of ChIP-chip experiments for yeast *S. cerevisiae* by Lee et al (2002, Science); $G \approx 6000$

 TF: GCN4; involved in response to amino acid starvation;

 Used their p-values.

- Positive (negative) control set: genes believed to be (not to be)
 the transcriptional targets of GCN4; $n = 80$ (900).

 compiled by Pokholok et al (2005, Cell); based on 3 sources of
 data: a newer generation of ChIP-chip; gene expression; DNA
 motif analysis).

 two connected genes: functional linkage;

 based on multiple data sources: gene expression,
 protein-protein interaction, gene co-citation, gene fusion and
phylogenetic profiles;

- Used their ‘ConfidentNet’: 4681 nodes, 34000 edges.
 summary of # direct neighbors: min=1, 25%=2, 50%=6, 75%=13, max=188.

- Merged the data and network.
 $G = 4616$ genes/nodes, 33432 edges;
 positive control set: 66 genes;
 negative control set: 770 genes;

- Subnetwork with only control genes: Fig 1 clustering?

- Evaluation: used only the two control sets to estimate sensitivity and specificity \Rightarrow ROC curve.

- Model fitting: Fig 2.
Standard:
\[
\hat{f}(z_i) = 0.91 \phi(z_i; 0, .80^2) + 0.037 \phi(z_i; -1.98, .40^2) + \\
0.058 \phi(z_i; 1.67, 1.94^2),
\]

Spatial:
\[
\hat{f}(z_i) = \hat{\pi}_{i,0,1} \phi(z_i; 0, .63^2) + \hat{\pi}_{i,0,2} \phi(z_i; -0.38, 1.02^2) + \\
\hat{\pi}_{i,1,1} \phi(z_i; 0.75, 1.53^2)
\]

averages of \(\hat{\pi}_{i,0,1}, \hat{\pi}_{i,0,2}, \hat{\pi}_{i,1,1} \): 0.500, 0.314 and 0.186.

• Statistical power: ROC curves in Fig 3
Figure 1: Subnetwork consisting of positive control genes (dark ones) and negative control genes (black ones).
Figure 2: Fitted mixture models.
Figure 3: ROC curves for the two methods applied to the real data.
Example genes

- ARG8: in the positive control set.
 - posterior prob: =0.728 by the spatial model; =0.023 by the standard model.
 - data in Lee et al (rich medium): binding ratio=1.02; used here.
 - ARG8: annotated in GO BP: amino acid biosynthetic process, while GCN4 is a transcriptional activator of amino acid biosynthetic genes in response to amino acid starvation. –a reasonable target.
 - How detected by the spatial model? ARG8 is the direct neighbor of 4 positive control genes but of none negative
control genes. borrowing information: its prior prob was estimated to be 0.733 by the spatial model, in contrast to 0.058 by the standard model.

• TRP5: not in either control set.
 – Prior prob: 0.716 by the spatial model vs 0.058 by the standard model;
 – Posterior prob: 0.723 vs 0.032;
 – binding ratio: =1.15 in Lee et al; =1.21 in Harbison et al;
 – Annotated in GO ‘BP: amino acid biosynthetic process’; likely a target!

• ICY2: a positive gene; has 6 neighbors: 2 negative and none positive.
 – Prior prob: 0.668 by the spatial model vs 0.058 by the
standard model;
- Posterior prob: 0.836 vs 0.548. detected!
- its two negative control genes: ADY2 and CRS5,
- 1) ADY2:
 Prior prob: 0.08 by the spatial model vs 0.058 by the standard model;
 Posterior prob: 0.06 vs 0.02;
- 2) CRS5:
 Prior prob: 0.12 by the spatial model vs 0.058 by the standard model;
 Posterior prob: 0.09 vs 0.02;
—both negative neighbors are not false positives!
Simulation

• Starting from the same network as in the real data, simulated a binary MRF for the latent states (i.e. whether $H_{0,i}$ holds or not).

 – Note: MRF not for x_j as used in our model; we have a mis-specified spatial model!

 – updated according to the conditional distribution; stopped after 10 iterations, nearly stable;

 – 4609 nodes, 33432 edge; 183 positive genes, and others negatives.

 – accordingly simulated z_i from the fitted model: $\phi(0,0.63^2)$ for the null distr, $\phi(0.75,1.53^2)$ for non-null.

• Simulated 5 datasets: ROC curves, Fig 4

• Sensitivity to mis-specified network structures: Fig 5 randomly removed 5% edges;
randomly added 5% edges;
randomly removed 5% and then added 5% edges.

- Sensitivity to hyperparameters: Fig 6
 prior for the precision of the mixture model; tried to use non-informative priors when possible.
Figure 4: ROC curves for the two methods applied to five simulated data sets. Dashed lines are for the spatial model; solid lines are for the independence model.
Figure 5: ROC curves for misspecified network structures.
Figure 6: ROC curves for sensitivity analysis (two different priors for the precision parameters of the normal mixture components).
Discussion

- A (happy or productive?) marriage of statistical genomics and spatial statistics.

- More comparisons, applications (e.g. to expression data) and extensions.
 - Wei and Li (2007, Bioinformatics): modeling the states of $H_{0,i}$ as a binary MRF; use ICM (Besag, 1986, JRSS-B). Give only point estimates; sensitivity to mis-specified network? Alternative: fully Bayesian.
 - Peng Wei’s thesis?

- Applicable: clustering genes with expression profiles for gene
function discovery.
stratified model: Pan (2006, *Bioinformatics*).
challenge here: computationally too demanding?
penalized methods: connected to Bayesian

• Extensions:
 – variable/gene selection in sample classifications.
 Feng Tai’s thesis?
 – variable/gene selection in sample clustering.
 Benhuai Xie’s thesis?

• My longer-term plan: apply to genome-wide association studies
 with SNP data.
 – a high-dim problem;
 – are stat genomics and stat genetics converging?
 – E.g., using gene chromosome location, functional
 groups/pathways or porotein-protein interaction networks...
– Using linkage analysis as prior for association study (Roeder et al 2006, AJHG) using weighted p-values. Extending to incorporating network?
– Yanni Zhu’s thesis?
Acknowledgement: This research was supported by NIH and a UM AHC Faculty Research Development grant.

You can download our papers from
http://www.biostat.umn.edu/rrs.php

Thank you!