Manual for program

Hui Zhou
Division of Biostatistics, School of Public Health, University of Minnesota
email: zhoux292@Qumn.edu

Nov 23, 2009

R_common_diag_cov.R and C_common_diag_cov.cpp tries to fit penalized model
based likelihood to the data assuming common diagonal covariance matrix across

different clusters.

e Since the core algorithm is carried out through calling the C++ program from
R, the first step is to compile the C++ code. Type at the command prompt in

Linux or Unix terminal:
R CMD SHLIB C_common_diag_cov.cpp

which would generate a C'_common_diag_cov.so file. Now, read the function

into R by typing the following in the R prompt:
source ("R_common_diag_cov.R")
e Next the function is run using the command:

common_diag_cov (Y,Y_tune,n,n_tune,k,k0,TRUE_INDEX,BIC,num_cluster,lambda)

Y Training data of size n x k, with each row represents one observation.

Y_tune Tuning data of size n_tune x k

n Number of observations for training data

n_tune Number of observations for tuning data

k Dimension for both training and tuning data

k0 First kO variables are informative; if this quantity is unknown, then z; and z»

in the output should be ignored
TRUE_INDEX The index showing the true group membership of each observation; if this
quantity is unknown, then RI and aRI in the output should be ignored
BIC Boolean variable, if TRUE then select number of cluster, penalty parameters based
on BIC, otherwise, use tuning data to select them. Default is FALSE
num_cluster A vector containing number of clusters to be considered. Default is from 1 to 10
lambda A vector containing penalty coefficients of the mean vector.
Default is from 0 to 20, with step size 1
MAX iter Maximum iteration allowed the EM algorithm. Default is 100
threshold Threshold for convergence. Default is 0.0001

where each argument means:

Therefore when knowing which variables are informative, the user should move

those to the left most kO columns of Y and Y _tune.

The function will return several R objects, which can be assigned to a variable.
For example, with all default options, to save the results in the variable out, type the

command:

out = common_diag_cov(Y,Y_tune,n,n_tune,k,k0,TRUE_INDEX,BIC,

num_cluster,lambda,MAX_iter,threshold)

To see the results, use the “$” operator (VariableName$ObjectName). common_diag_cov()

returns the following objects:

e Example:

num_cluster optimal number of clusters

lambda optimal penalty parameter on the mean structure

group_member posterior probability for each observation belonging to each cluster

21
2.2
RI
aRI

number of estimated non-informative variables among truly informative variables
number of estimated non-informative variables among truly non-informative variables
rand index between the estimated group membership and TRUE_INDEX

adjusted rand index between the estimated group membership and TRUE_INDEX

In this example, we first generate a dataset consist of two clusters, with the
same diagonal covariance structure but with different mean vector in the first
21 variables, while the remaining 279 variables are noninformative, i.e simulated
from standard Normal distribution. The details of how to generate the data is

shown below. After data generation, call the function and save the results:

out = common_diag_cov(Y,Y_tune,n,n_tune,k,k0,TRUE_INDEX,BIC=T,

num_cluster=seq(1:5),lambda=seq(0:20) ,MAX_iter=100,threshold=1e-4))

Then to see the output:

> out$num_cluster
[1] 2

> out$lambda
[1] 11

> out$z_1
(11 ©

> out$z_2
[11 277

> out$RI

(11 1

> out$aRI

(11 1

> out$group_member
[11 2222222222222222222222222222222222222
[38] 2222222222222222222222222222222222222
[f53] 22222211111111111111111111

The entire example programs is as follows:

source("R_CS_diag_cov.R")

HEH R parameters ####HHHHHHHHHHHHHHR RS
set.seed(2)

k0<-21 # number of attributes defining the clustering
k<- 300 # number of attributes total

n<- 100 # total number of objects

n0<-20 # number of objects in the small cluster

n_tune <-nx*l # total number of tuning objects

n0_tune <-n0*1 # number of tuning objects in the smaller cluster

nsim=1 # number of simulated data

ul=0.0 #the mean of the first cluster
sd1=1.0 #standard dev

sd2=1.0

u2=0.0 # the mean of one cluster other than the other mean cluster
du=2

du_tune=du

#EH R R AR RS generate data ####HHHHHHBHHHEHR RS

TRUE_INDEX <- c(rep(1,(n-n0)),rep(2,n0))

#cluster structure of the dataset is as following:

informative# noise#

kO k-kO0

#cluster 1 n-n0 | Y11 Y12

#cluster 2 n0 | Y21 Y22
Yii<-matrix(rnorm(k0O* (n-n0) ,ul,sdl) ,nrow=n-n0,ncol=k0) # simulated
Y12<-matrix (rnorm((k-k0) *(n-n0) ,ul,sdl) ,nrow=n-n0,ncol=k-k0) # simulated
Y21<-matrix (rnorm(n0*k0,u2,sd2), nrow=n0,ncol=k0)+du

Y22<-matrix (rnorm(nO*(k-k0) ,u2,sd2), nrow=n0,ncol=k-k0)
Y<-rbind(cbind(Y11,Y12),cbind (Y21,Y22))

#
Yii<-matrix(rnorm(kO* (n_tune-nO_tune) ,ul,sdl) ,nrow=n_tune-n0_tune,ncol=k0)
Y12<-matrix(rnorm((k-k0) *(n_tune—nO_tune) ,ul,sdl) ,nrow=n_tune-n0_tune,ncol=k-k0)
Y21<-matrix (rnorm(n0_tunexk0,u2,sd2), nrow=n0_tune,ncol=k0)+du_tune
Y22<-matrix (rnorm(n0_tunex* (k-k0) ,u2,sd2), nrow=n0_tune,ncol=k-k0)
Y_tune<-rbind(cbind(Y11,Y12),cbind(Y21,Y22))

#

mu_Y<-apply(Y,2,mean)

Y<-t (t(Y)-mu_Y)

Y_tune<-t (t(Y_tune)-mu_Y)

sd_Y<-apply(Y,2,sd)

Y<-t (£ (Y)/sd_Y)

Y_tune<-t(t(Y_tune)/sd_Y)

BT S i s S S S e S e Ee s R T T

out <- common_diag_cov(Y,Y_tune,n,n_tune,k,kO,TRUE_INDEX,BIC=T,
num_cluster=seq(1:5),lambda=seq(0:20) ,MAX_iter=100,threshold=1e-4)
out$num_cluster

out$lambda

out$z_1

out$z_2

out$RI
out$aRI

out$group_member

