
Survival Analysis (Chapter 7) 

 

• Survival (time-to-event) data 

• Kaplan-Meier (KM) estimate/curve 

• Log-rank test 

• Proportional hazard models (Cox regression) 

• Parametric regression models  



Survival Data: Features 

• Time-to-event (“event” is not always death) 

 

 

 

 

 

 

 

 

• One “event” per person (there are models to handle multiple events per 

person) 

• Follow-up ends with event 

• Time-to-death, Time-to-failure, Time-to-event (used interchangeably) 

 

 



Survival Data: Structure 

 

For the ith sample, we observe: 

𝑇𝑖 = time in days/weeks/months/… since origination of the study/treatment/… 

𝛿𝑖 =  
1, ℎ𝑎𝑣𝑖𝑛𝑔 𝑒𝑣𝑒𝑛𝑡 𝑎𝑡 𝑇𝑖

0, 𝑛𝑜 𝑒𝑣𝑒𝑛𝑡 𝑎𝑠 𝑜𝑓𝑇𝑖     
 

𝑋𝑖: covariate(s), e.g., treatment, demographic information  

 

Note: in survival analysis, both 𝑇𝑖 and 𝛿𝑖 are outcomes, i.e., 𝑌𝑖 = 𝑇𝑖 , 𝛿𝑖 . 

 

Censoring: Some lifetimes are known to have occurred only within certain 

intervals. 

Truncation: We only observe subjects whose event time lies within a certain 

observational window (TL, TR). We have no information on subjects whose 

event time is not in this interval. (For censored data, we have at least partial 

information on each subject) 



Censoring 
Let T = failure time, and C = censoring time 

• Right censoring: T > C (a survival time is not known exactly but known to 
be greater than some value) 

 e.g., lost to follow-up, end of study 

• Left censoring:  the failed subject is never under observation.  It is only 
known that the subject failed between (0, C). 

 e.g., study time to employment, some individuals were already employed at 
the beginning of the study 

• Interval censoring: we do not observe exactly when failure occurred, only 
that it occurred between time (C1, C2). 

e.g., longitudinal study with periodic follow-up and the patient’s event time 
is only known to fall in an interval (L , R]. 

– Mathematically the same as left censoring. 

Note: we assume censored subjects “not different” in risk. 



Truncation 

• Left truncation: similar to left censoring, but we don’t know those 

individuals who failed before time C. (often refer to a delayed entry) 

e.g., exposure to some disease, diagnosis of a disease, entry into a 

retirement home. Any subjects who experience the event of interest prior to 

the truncation time are not observed. 

• Interval truncation: handled similarly as left truncation 

• Right truncation: indistinguishable from right censoring (because failure is 

certain to occur eventually) 



Censoring and Truncation 

• SAS: 

  model (time_enter time_end)*failed(0) = … 

• Stata: 

  stset time_end, failure(failed) enter(time time_enter) 

  



Goals of a Survival Analysis 

• Summarize the distribution of survival times 

– Tool: Kaplan-Meier curves 

• Compare the survival between groups, e.g., two treatments in clinical trial 

– Tool: Logrank test 

• Understand predictors of survival 

– Tool: Cox regression model/parametric models 



Leukemia Example 

Treatment for leukemia: Time is measured from remission from induction 

therapy until relapse. (VGSM Chapter 3.5) 

 

 

 

 

 

*: The sample was censored. 



Leukemia Example 

 

a. How many of the 6-MP group were censored? 

b. What is the longest time until censoring? 

c. Is it possible to estimate the MEAN time until relapse in the 6-MP group? 

How about in the Placebo group? 

• What if the first two time points of the Placebo group were censored, 

would the mean of the Placebo group then be estimable? 

• What does this say about the usefulness of the Mean when we have right 

censored data? 

d. What is the likelihood someone relapses AFTER week 3 in the Placebo 

group or in other words what is the likelihood someone has NOT relapsed 

before nor including week 3? Same question in the 6-MP group? 

 



Survival Function 

 

 

 

Because there is no censoring in the placebo group, it is simple to estimate the 

survival probability at each week t by simply taking the percentage of the 

sample who have not had an event, e.g., S(1)=19/21, S(2)=17/21, …. 

In the 6-MP group, because of the right censoring it is not immediately 

obvious how to estimate the survival probabilities. 

• For example, a naïve and mistaken way to estimate the probability of 

relapse after week 7 (i.e. S(7)) would be to simply consider the person who 

was censored at week 6 to have instead relapsed at week 6 thus leading to a 

survival probability of 16/21 = 0.7619, or else to assume that the person 

censored at week 6 instead has still not relapsed by time 7 and to take 

17/21. The first method is too pessimistic and the second is too optimistic. 



Survival Function: without censoring 

 

 

 

 

 

 

 

 

 

 

Use the graph to identify what is median time until relapse in the Placebo 

group? Would you have come to this same conclusion looking at the raw data? 
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Kaplan Meier Estimator 

The solution is to rethink the way to estimate the survival probability by noting 

that the probability can be broking up into the product of probabilities during 

specific intervals. For any time t > t1, 

S(t) = Pr(event occurs after time t) = Pr(survive up to time t1)*Pr(survive 

between time t1 to t | survive up to time t1) 

The conditional probability is estimated by using the members of the sample 

who are still at risk at time t1 (i.e. those who are still known to be at risk at 

time t1 “the risk set”) 

 

 

 



Kaplan Meier Estimator 
In general, for 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1), j = 1, 2, 3, …, we have: 

𝑆 𝑡 = 1 −
𝑑1

𝑛1
1 −

𝑑2

𝑛2
… 1 −

𝑑𝑗

𝑛𝑗
=  1 −

𝑑𝑖

𝑛𝑖

𝑗

𝑖=1

 

where:  

di = the number of people who have an event during the interval [𝑡𝑖 , 𝑡𝑖+1) 

ni = the number of people at risk just before the beginning of the interval 

[𝑡𝑖 , 𝑡𝑖+1) 

 

Note that the KM estimator is a step (staircase) function, with the intervals 

closed at left and open at right.  



Kaplan-Meier Curves 

 

• Useful for exploring survival data 

• Plots estimated “survival” probability versus time 

• Drops at failure times 

• Constant between failures 

• Suggests periods of high/low events 

• Helps to compare groups 



Survival Function: comparing 3 methods 
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Survival Function: KM estimate 

a. Based on the KM what is the estimated median time until relapse. Would we 

have been able to find the median using the raw data like in the placebo case? 

b. Based on the KM can we estimate at what time there would be 75% of the 

6MP group who would have relapsed? 
 

 

           Beg.          Net            Survivor      Std. 

  Time    Total   Fail   Lost           Function     Error     [95% Conf. Int.] 

------------------------------------------------------------------------------- 

     6       21      3      1             0.8571    0.0764     0.6197    0.9516 

     7       17      1      0             0.8067    0.0869     0.5631    0.9228 

     9       16      0      1             0.8067    0.0869     0.5631    0.9228 

    10       15      1      1             0.7529    0.0963     0.5032    0.8894 

    11       13      0      1             0.7529    0.0963     0.5032    0.8894 

    13       12      1      0             0.6902    0.1068     0.4316    0.8491 

    16       11      1      0             0.6275    0.1141     0.3675    0.8049 

    17       10      0      1             0.6275    0.1141     0.3675    0.8049 

    19        9      0      1             0.6275    0.1141     0.3675    0.8049 

    20        8      0      1             0.6275    0.1141     0.3675    0.8049 

    22        7      1      0             0.5378    0.1282     0.2678    0.7468 

    23        6      1      0             0.4482    0.1346     0.1881    0.6801 

    25        5      0      1             0.4482    0.1346     0.1881    0.6801 

    32        4      0      2             0.4482    0.1346     0.1881    0.6801 

    34        2      0      1             0.4482    0.1346     0.1881    0.6801 

    35        1      0      1             0.4482    0.1346     0.1881    0.6801 

------------------------------------------------------------------------------- 



Comparing Survival Curves 
0
.0

0
0
.2

5
0
.5

0
0
.7

5
1
.0

0

S
u
rv

iv
a
l 
D

is
tr

ib
u

ti
o
n

 F
u
n

c
ti
o
n

0 10 20 30 40
weeks

trt = 0 trt = 1

Time until relapse -- Kaplan-Meier



Log Rank Test 

H0: survival distributions are equal at all followup times. 

HA: the two survival curves differ at one or more points in time. 

Compares observed number of events in different intervals with expected 

number assuming two survival curves are the same. (a Chi-square test) 
Log-rank test for equality of survivor functions 

 

      |   Events         Events 

trt   |  observed       expected 

------+------------------------- 

0     |        21          10.75  chi2(1) =      16.79 

1     |         9          19.25  Pr>chi2 =     0.0000 

------+------------------------- 

Total |        30          30.00 

 

Assumptions:  

• 2 or more independent groups 

• Censoring independent of future risk  

Does not assume: 

• Proportional hazards (discussed later) 

• Equal censoring (censoring process does not depend on group/treatment) 



Log Rank Test: multiple groups (K > 2) 

 

• K-group log-rank 

• H0: survival curves equal for all groups 

• HA: some or all of the survival curves differ at one or more points in time 

• Treats K groups as unordered 

• Analogous to F-test 

• When rejected, unclear interpretation: use KM plots to examine where the 

important differences arise.  



Hazard function 

 

 

 

 

 

• Also known as the instantaneous failure rate, force of mortality, and age-

specific failure rate 

 h(t) = -d/dt log[S(t)] ≈ #failure at day t /# followed to t 

• Similar to conditional probability of failure 

• Difficult to calculate: few failures in small time periods (using smoothing 

technique) 



Example: Pediatric Kidney Transplant 

 

• 9883 kids (age ≤ 18) with kidney transplant 

• Event: Time from transplant to death 

• UNOS database covering 1990-2002 

 38,005 person-years at risk, 465 deaths 

• Does donor source influence survival? 

 cadaveric vs. living donor 

• Does transplant year affect survival? 



Follow-up Time 

 

 

 

 

 

 

 

 

• Explain why there is a lower triangular shape. 

• Explain why there are clumps of observations near the diagonal in the 

Death = 0 plot 



Survival Curves by Donor Type 
 

 

 

 

 

 

 

 

 

 

Can you tell where the greatest risk of death is? That is, can you describe the 

Hazard function? 
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Survival Curves by Donor Type 
Summary Statistics for Time Variable fu 

                   Quartile Estimates 

             Point          95% Confidence Interval 

Percent    Estimate    Transform      [Lower      Upper) 

     75       .        LOGLOG          .           . 

     50       .        LOGLOG          .           . 

     25       .        LOGLOG          .           . 

 

    Mean    Standard Error 

  9.9827            0.0493 

NOTE: The mean survival time and its standard error were underestimated because the largest 

      observation was censored and the estimation was restricted to the largest event time. 

 

Summary of the Number of Censored and Uncensored Values 

                                                            Percent 

Stratum          txtype       Total  Failed    Censored    Censored 

      1               0        5148     177        4971       96.56 

      2               1        4627     288        4339       93.78 

------------------------------------------------------------------- 

  Total                        9775     465        9310       95.24 

 

Test of Equality over Strata 

                                   Pr > 

Test      Chi-Square      DF    Chi-Square 

Log-Rank     47.0910       1      <.0001 

Wilcoxon     46.5318       1      <.0001 

-2Log(LR)    50.2749       1      <.0001 

 

 

 

 

 

 



Survival Curves by Donor Type 

 

a. Why are there no estimates given under the Quartile Estimates output? 

 

b. Can we conclude that these survival curves are different from one another? 

 

c. Which group has better survival? 

 

 

 

 

 



Mortaility Hazard: LOWESS 



Hazard for Kidney Transplant Data 

 

• Peaks in first weeks after transplant 

• Maximum Hazard: ≈ 0.2 deaths/1000 person-days 

• Steadily decreases until year 3 (5-fold drop) 

• Stabilizes through year 12 

• A simple mathematical function of time? 

• What does this imply about risk? 



LOWESS-Smoothed Hazard Function by donor type 

 

 

 

 

 

 

 

 

 



Hazard Ratio 

 

• Relative short-term risk at time t: HR(t) = hc(t)/hl(t), where: 

hc(t): hazard function in the recipients of kidneys from recently deceased 

donors 

hl(t): hazard function in the recipients of kidneys from living donors 

 

• If hc(t) = r*hl(t), proportional hazards  

hazards have same shape 

 

• Hazards may be complex function of time. 

 

• r can be interpreted as a relative hazard 



Proportional Hazard: kidney data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The hazard function for Cadaveric kidney is approximately proportional to the 

hazard function for living kidney donor. 



Proportional Hazards Assumption 

 

 

 

 

 

Analog: multiple linear regression without interaction terms, e.g., 

similar age effects in males and females (what is the moderator in the 

interaction?) 



Cox Proportional Hazards Model 
The Cox Proportional Hazards model (CPH) (or “Cox model” or “Cox 
regression”) is the most commonly applied model in medical time-to-event 
studies. The original reference is: Cox DR. Regression models and life tables 
(with discussion). Journal of the Royal Statistical Society Series B 
1972;34:187–220. 
 
The Cox proportional hazards model does not make any assumption about the 
shape of the underlying hazards, but makes the assumption that the hazards for 
patient subgroups are proportional over follow-up time. 
 
There are parametric hazard models that assume the hazard function follows a 
particular functional form derived from, e.g. an exponential or Weibull 
distribution.  
• These parametric models are more efficient if the functional form of the 

hazard is correct and also allow prediction beyond the data (although risky 
like extrapolation in general because the form of the hazard can’t be 
verified).  

The CPH is much more common because of its robustness to the form of the 
hazard and because it has been show to be relatively efficient. 
 



Developing the CPH Regression Model 

1. We are interested in modeling the hazard function, h(t; X), for individuals 

with covariate vector X , where X represents k predictors X1, . . . , Xk. 

(e.g. liver type, age, year of transplant, etc.) 

 

2. The hazard function should be non-negative, so since exp(β0 + β1X1 + … 

+ βkXk) is always positive, it is natural to model: 

log h(t; X) = β0 + β1X1 + … + βkXk 

As is, the right hand side of this equation does not depend on t and 

although in some cases it might be ok to assume the hazard is constant 

across time, constant hazard usually is unrealistic. 



Developing the CPH Regression Model 

3. The solution is to replace the intercept with a function of time, called the 

baseline hazard function h0(t) which is non-parametrically estimated in the 

Cox model (similar to the non-parametric way the KM estimates the 

Survival function) and serves as the reference for how the hazard changes 

over time. Thus the model becomes: 

log h(t; X) = log h0(t) + β1X1 + … + βkXk 

h(t; X) = h0(t) exp(β1X1 + … + βkXk) 

The hazard at any particular time for some covariate combination is 

proportional to the baseline hazard. Hence comparisons between two sets 

of covariate values will NOT depend on time. Show that the hazard ratio 

for a 1 unit increase in X, i.e. h(t;X+1)/h(t;X), does not depend on t. 

 

4. Estimates for β1,…, βk are log hazard ratios with exp(βk) representing the 

hazard ratio for a one unit increase in Xk. Note the HR does not depend on 

t (time). The proportionality assumption (i.e. that the HR does not depend 

on time) should be checked and we’ll see how to do it later. 



Partial Likelihoods 
Assuming the event and censoring time are independent and no ties between 
the event time,  
 
 
 
 
 
 
 
 
where R(ti) is the risk set at time ti, i.e., individuals who are still under study at 
a time just prior to ti. The partial likelihood is: 
 
 
 
Note that this is the same LL as for conditional logistic regression. 
 
When multiple events occurred at the same time, there are multiple ways to 
calculate or approximate the partile likelihood function. In SAS, use /ties=…; 
in Stata, specify one of the efron/breslow/exactm/exactp options. 



CPH Regression Model: Kidney Data 

From the survival curves, it looks like kidneys from live donors lead to better 

survival than cadaver kidneys. But this is not a randomized experiment so the 

choice of whether someone got a living or cadaver kidney was NOT 

randomized. Hence there may be some confounders that need to be controlled 

when considering which type of kidney is better. For example, there may be 

some other variables that are predictive of whether someone gets a live kidney 

and that same variable may also effect survival. 

 

Here we consider how the Age of the recipient and year of transplantation are 

related to survival. 



Survival Curves by Age Group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Which age group has the worst prognosis examining the KM curves? 
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Survival Curves by Age Group: log-rank test 

Log-rank test for equality of survivor functions 

 

       |   Events         Events 

agecat |  observed       expected 

-------+------------------------- 

<3     |        82          40.37 

3-4    |        37          27.35 

5-6    |        24          29.42 

7-16   |       231         268.36 

17     |        46          47.18 

18     |        40          47.31 

-------+------------------------- 

Total  |       460         460.00 

 

             chi2(5) =      53.78 

             Pr>chi2 =     0.0000 

 



Age Group vs Donor Type 

Here is a plot of the age of the recipient versus the proportion who received a 
kidney from a cadaver. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There is a trend such that the older the recipient, the more likely to receive a 

cadaver kidney. 

If we would “control” for age, how would you expect it to change the effect found 

for kidney type? 
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Survival Curves by Transplant Year 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Which group has the worst prognosis examining the KM curves? 
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Survival Curves by Transplant Year: log-rank test 

Summary of the Number of Censored and Uncensored Values 

                                                         Percent 

Stratum    yearsperf       Total  Failed    Censored    Censored 

      1    1990-1994        3651     261        3390       92.85 

      2    1995-1999        3929     171        3758       95.65 

      3    2000-2002        2195      33        2162       98.50 

---------------------------------------------------------------- 

  Total                     9775     465        9310       95.24 

 

    Trend Tests 

                Test      Standard 

Test       Statistic         Error       z-Score    Pr > |z|    Pr < z    Pr > z 

Log-Rank    -30.2577       13.1027       -2.3093      0.0209    0.0105    0.9895 

Wilcoxon  -277528.00    105598.540       -2.6281      0.0086    0.0043    0.9957 

 

The trend tests test for trend across the levels of the strata (three time period). 

The p-values suggest that there have been secular improvements in the 

prognosis for survival after kidney transplant as time passes. 



Transplant Year vs Donor Type 

           |        txtype 

 yearsperf |    Living  Cadaveric |     Total 

-----------+----------------------+---------- 

 1990-1994 |     1,808      1,843 |     3,651  

           |     49.52      50.48 |    100.00  

-----------+----------------------+---------- 

 1995-1999 |     2,099      1,830 |     3,929  

           |     53.42      46.58 |    100.00  

-----------+----------------------+---------- 

 2000-2002 |     1,241        954 |     2,195  

           |     56.54      43.46 |    100.00  

-----------+----------------------+---------- 

     Total |     5,148      4,627 |     9,775  

           |     52.66      47.34 |    100.00  

 

          Pearson chi2(2) =  28.5907   Pr = 0.000 

We can see in the data that the % of kidneys from cadavers has been going 

down over time as well. So, the year in which the surgery was performed may 

also be a confounder for the true effect of kidney type. 

Indeed we could even investigate kidney type as a mediator for the 

improvement in survival over time. 



Cox Proportional Hazards Model: SAS 

proc phreg data=unos_c; 

     model fu*death(0) = txtype/risklimits alpha = .05; 

run; 

 

         Data Set                 WORK.UNOS_C 

                              Dependent Variable       fu 

                              Censoring Variable       death 

                              Censoring Value(s)       0 

                              Ties Handling            BRESLOW 

 

 

                            Number of Observations Read        9775 

                            Number of Observations Used        9775 

 

 

                       Summary of the Number of Event and Censored Values 

 

                                                               Percent 

                             Total       Event    Censored    Censored 

 

                              9775         465        9310       95.24 

 

 

                                       Convergence Status 

 

                         Convergence criterion (GCONV=1E-8) satisfied. 



Cox Proportional Hazards Model: SAS 

 

Model Fit Statistics 

                 Without           With 

Criterion     Covariates     Covariates 

-2 LOG L        8023.065       7975.964 

AIC             8023.065       7977.964 

SBC             8023.065       7982.106 

 

        Testing Global Null Hypothesis: BETA=0 

Test                 Chi-Square       DF     Pr > ChiSq 

Likelihood Ratio        47.1012        1         <.0001 

Score                   47.0867        1         <.0001 

Wald                    45.4954        1         <.0001 

 

                             Analysis of Maximum Likelihood Estimates 

                  Parameter     Standard                               Hazard     95% Hazard Ratio 

Parameter   DF     Estimate        Error   Chi-Square   Pr > ChiSq      Ratio    Confidence Limits 

txtype       1      0.64466      0.09558      45.4954       <.0001      1.905      1.580      2.298 

 

What is the hazard ratio for death in the cadaver group as compared to the 

living kidney donor group? 



Cox Proportional Hazards Model: Stata 

. stset fu, failure(death) 

 

     failure event:  death != 0 & death < . 

obs. time interval:  (0, fu] 

 exit on or before:  failure 

 

------------------------------------------------------------------------------ 

     9775  total obs. 

       25  obs. end on or before enter() 

------------------------------------------------------------------------------ 

     9750  obs. remaining, representing 

      461  failures in single record/single failure data 

 38004.91  total analysis time at risk, at risk from t =         0 

                             earliest observed entry t =         0 

                                  last observed exit t =  12.53151 



Cox Proportional Hazards Model: Stata 

. stcox txtype, nohr 

 

Cox regression -- Breslow method for ties 

 

No. of subjects =         9750                     Number of obs   =      9750 

No. of failures =          461 

Time at risk    =  38004.90961 

                                                   LR chi2(1)      =     44.82 

Log likelihood  =   -3952.3735                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      txtype |   .6310981   .0958317     6.59   0.000     .4432714    .8189248 

------------------------------------------------------------------------------ 

Note the estimate is slightly different from SAS output.  It is because Stata 

excludes samples with survival time 0 (fu=0). We can get back these samples 

by adding a small amount of time. 
 

. replace fu=.002 if fu==0 

. stset fu, failure(death) <-- Take a look at Stata output, compare to the previous one 

. stcox txtype, nohr 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      txtype |   .6446623   .0955754     6.75   0.000      .457338    .8319866 

------------------------------------------------------------------------------ 



Cox Proportional Hazards Model: Stata 

The partial likelihood in CPH model depends on the risk groups at each 

failure. 

• When there is no time-varying covariate, only the relative order of failures 

matters 

• We can shift the origin without changing the estimation results 

 
. replace fu=fu+20 

. stset fu, failure(death) 

. stcox txtype, nohr 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      txtype |   .6446623   .0955754     6.75   0.000      .457338    .8319866 

------------------------------------------------------------------------------ 

 



Cox Proportional Hazards Model: confounders 

proc phreg data=unos_c; 

     model fu*death(0) = txtype age/risklimits alpha = .05; 

run; 

 

                             Analysis of Maximum Likelihood Estimates 

                  Parameter    Standard                            Hazard   95% Hazard Ratio 

  Parameter  DF    Estimate       Error  Chi-Square  Pr > ChiSq     Ratio   Confidence Limits 

  txtype      1     0.69376     0.09616     52.0543      <.0001     2.001     1.657     2.416 

  age         1    -0.04908     0.00854     33.0671      <.0001     0.952     0.936     0.968 

What is the hazard ratio for death in the cadaver group as compared to the 

living kidney donor group? Compare to the txtype only model. 

 
proc phreg data=unos_c; 

     class yearsperf (ref = "1990-1994"); 

     model fu*death(0) = txtype yearsperf/risklimits alpha = .05; 

run; 

 

                         Parameter   Standard                         Hazard  95% Hazard Ratio 

 Parameter           DF   Estimate      Error Chi-Square Pr > ChiSq    Ratio Confidence Limits 

 txtype               1    0.63847    0.09563    44.5758     <.0001    1.894    1.570    2.284 

 yearsperf 1995-1999  1   -0.12912    0.10329     1.5627     0.2113    0.879    0.718    1.076 

 yearsperf 2000-2002  1   -0.38078    0.19336     3.8780     0.0489    0.683    0.468    0.998 

What is the hazard ratio for death in the cadaver group as compared to the 

living kidney donor group? Compare to the txtype only model. 



Cox Proportional Hazards Model: age + yearsperf 

. stcox txtype age i.yearsperf 

 

Cox regression -- Breslow method for ties 

 

No. of subjects =         9766                     Number of obs   =      9766 

No. of failures =          464 

Time at risk    =  233306.5767 

                                                   LR chi2(4)      =     83.45 

Log likelihood  =   -3960.7595                     Prob > chi2     =    0.0000 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      txtype |   1.989285   .1913899     7.15   0.000     1.647413    2.402102 

         age |   .9521617   .0081282    -5.74   0.000     .9363633    .9682267 

             | 

   yearsperf | 

       1995  |   .8750921   .0905664    -1.29   0.197     .7144303    1.071884 

       2000  |   .6833657    .132183    -1.97   0.049     .4677413    .9983908 

------------------------------------------------------------------------------ 

 

What is the hazard ratio for 2000-2002 as compared to 1990-1994 (the 

reference)? What is the hazard ratio for age? 

How did the hazard ratio for kidney type change depending on what was 

controlled for? 



Adjusted Survival Functions 

Similar to Adjusted means (LSmeans) which provide a way to present results 

from a regression back on the original scale, we can obtain the Adjusted 

(regression fitted) Survival curves for different combinations of predictors. 
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Categorical variable: categories with no events 

. replace death = 0 if yearsperf==1990 

(261 real changes made) 

 

. stset fu, failure(death) 

 

     failure event:  death != 0 & death < . 

obs. time interval:  (0, fu] 

 exit on or before:  failure 

 

---------------------------------------------------------------------- 

     9775  total obs. 

        0  exclusions 

---------------------------------------------------------------------- 

     9775  obs. remaining, representing 

      204  failures in single record/single failure data 

 38004.96  total analysis time at risk, at risk from t =         0 

                             earliest observed entry t =         0 

                                  last observed exit t =  12.53151 

 

 



Categorical variable: categories with no events 

. stcox txtype i.yearsperf 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      txtype |   1.953708   .2815818     4.65   0.000     1.472918    2.591437 

             | 

   yearsperf | 

       1995  |   1.57e+10   3.17e+09   116.76   0.000     1.06e+10    2.33e+10 

       2000  |   1.31e+10          .        .       .            .           . 

------------------------------------------------------------------------------ 

 

. stcox txtype ib(2000).yearsperf 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      txtype |   1.953708   .2815818     4.65   0.000     1.472918    2.591437 

             | 

   yearsperf | 

       1990  |   3.90e-22          .        .       .            .           . 

       1995  |   1.200451   .2413932     0.91   0.364     .8094316    1.780363 

------------------------------------------------------------------------------ 

 

Avoid using category with no events as the reference group (recall the 
separation problem in logistic regression. difference here?) 



Assessing the Proportional Hazards Assumption 

• The proportional hazards assumption is a strong assumption and its 
appropriateness should always be assessed. 

• The model assumes that the ratio of the hazard functions for any two subgroups 
(i.e. two groups with different values of the explanatory variable X) is constant 
over follow-up time. 

• Note that it is the hazard ratio which is assumed to be constant. The hazard can 
vary freely with time (baseline hazard is a function of t, h0(t)). 
 

. estat phtest, detail 

      Test of proportional-hazards assumption 

      Time:  Time 

      ---------------------------------------------------------------- 

                  |       rho            chi2       df       Prob>chi2 

      ------------+--------------------------------------------------- 

      txtype      |     -0.09261         4.09        1         0.0430 

      age         |      0.24686        35.69        1         0.0000 

      1990b.year~f|            .            .        1             . 

      1995.years~f|      0.05677         1.54        1         0.2142 

      2000.years~f|      0.00960         0.04        1         0.8350 

      ------------+--------------------------------------------------- 

      global test |                     39.40        4         0.0000 

      ---------------------------------------------------------------- 

 

Can also test the PH assumption on transformation of analysis time (e.g., log or rank). 

More on: http://www.ats.ucla.edu/stat/examples/asa/test_proportionality.htm 



Assessing the Proportional Hazards Assumption – using 

Schoenfeld residuals 

. estat phtest, plot(age) 
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Assessing the Proportional Hazards Assumption – Survival 

curves 

. stcoxkm, by(txtype) 
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Assessing the Proportional Hazards Assumption – log-log plot 

. stphplot, by(txtype) 
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Proportional Hazards Assumption: alternatives 

When the proportional hazards assumption is violated, some possible 

approaches: 

• Consider time-varying covariates: X enter the model as a function of time 

• Stratification: instead of treating X as a covariate, model the hazard 

function in each stratum of X 

h(t; stratum=j, X) = h0j(t) exp(β1X1 + … + βkXk) 

We assume that the effect of each of the covariates is the same across strata, 

but the baseline hazard are different. 

• Parametric regression models 

 

 



Stratified Analysis 

. stcox txtype i.yearsperf, strata(agecat) 

 

Stratified Cox regr. -- Breslow method for ties 

 

No. of subjects =         9775                     Number of obs   =      9766 

No. of failures =          465 

Time at risk    =  38004.95961 

                                                   LR chi2(3)      =     62.11 

Log likelihood  =    -3272.124                     Prob > chi2     =    0.0000 

 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      txtype |   2.032869   .1962781     7.35   0.000      1.68238    2.456376 

             | 

   yearsperf | 

       1995  |   .8816313   .0912277    -1.22   0.223     .7197937    1.079856 

       2000  |   .6717791   .1299931    -2.06   0.040      .459742    .9816096 

------------------------------------------------------------------------------ 

                                                          Stratified by agecat 

 



Time-depenendent (time-varying) Covariates 

 

 

• Discrete time-varying covariates:  

– Example: Aurora et al. (1999) followed 124 patients to study the effect of lung 

transplantation on survival in children with cystic fibrosis. The natural time 

origin in this study is the time of listing for transplantation, not transplantation 

itself. 

– Transplantation is then treated as a time-dependent variable. 

 

 

 

– The data is in the long format, similar to that of longitudinal data. 

– We do not need to change the command syntax: just enter transplantation as a 

predictor in the model statement. 



Time-depenendent (time-varying) Covariates 

• Continuous time-varying covariates: interaction between predictor(s) and function 
of time, i.e., zi(t) = zi*f(t) 

. stcox txtype age i.yearsperf, tvc(txtype age) 

                                                   LR chi2(6)      =    121.83 

Log likelihood  =   -3941.5661                     Prob > chi2     =    0.0000 

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

main         | 

      txtype |   2.366621    .307691     6.63   0.000     1.834263    3.053485 

         age |   .9108782   .0102289    -8.31   0.000     .8910488    .9311488 

             | 

   yearsperf | 

       1995  |   .8758925    .090591    -1.28   0.200      .715177    1.072724 

       2000  |   .6845634   .1324103    -1.96   0.050     .4685671    1.000128 

-------------+---------------------------------------------------------------- 

tvc          | 

      txtype |   .9287556   .0338322    -2.03   0.042     .8647575    .9974901 

         age |   1.020512   .0035547     5.83   0.000     1.013569    1.027503 

------------------------------------------------------------------------------ 

Note: variables in tvc equation interacted with _t 

 

*. In SAS, the interaction(s) need to be generated within –proc phreg-: 
proc phreg data = unos_c; 
 class yearsperf (ref = "1990-1994"); 
 model fu*death(0) = txtype age yearsperf aget txt /risklimits alpha = .05; 
 aget = age*fu; 
 txt = txtype*fu; 
run; 



Residual analysis 

• Cox-Snell residuals: assessing overall model fit 

 

• Martingale residuals: determining the functional form of covariates 

 

• Deviance residuals: examining model accuracy and identifying outliers 

 

• Schoenfeld/scaled Schoenfeld residuals: checking PH assumption 

 

• Efficient score residuals (Likelihood displacement values, LMAX values, 

and DFBETAs): identifying influential subjects 



Cox Proportional Hazard Model – Partial Likelihood 

An extreme example, 

 

 

 

 

 

We cannot obtain estimate for gender effect, since there is only one subject at 

each failure time.  We also cannot obtain KM estimate of the overall survivor 

function. 

Parametric model has to be used with these data. 

 

id T0 T Gender Failure 

1 0 2 0 1 

2 3 5 1 0 

3 6 8 0 1 

4 9 10 1 1 



Parametric Regression Model 

Use a linear model to model log survival time: 

log(x) = μ + γ’Z + σW 

where W is the error distribution with mean 0 and variance 1. 

Choice of distribution:  

Exponential 

Weibull 

log-normal 

log-logistic 

Gamma 

inverse Gaussian 

etc. 

 

 



Parametric Regression Model 

Another representation: accelerated failure-time (AFT) model 

S(x; Z) = S0(exp{Zθ}x) 

where exp{Zθ} is called an acceleration factor to model the change of time 

scale compared to the baseline time scale. For example, let Z be the donor 

type, then the baseline survival function (Z = 0, living donor) is S0(x), while 

for cadaveric donor (Z = 1), S(x; Z=1) = S0(exp{θ}x). The survival time is 

accelerated by eθ times. Therefore, a positive estimate for θ implies a shorter 

survival time. 

 

When S0(x) = exp(μ + σW), the two representations are equivalent with 

θ = - γ 

 



Hazard Function 

Recall: h(t) = -d(log[S(t)])/dt  

h(x; Z) = h0(exp{Zθ}x)exp(Zθ) 

Example: 

Suppose W follows an extreme value distribution with density function  

fW(w) = exp{w − ew} 

Then: 

S(x; Z) = S0(exp{Zθ}x) = exp{-[exp{Zθ}x]1/σ} 

h(x; Z) = h0(exp{Zθ}x) = (1/σ)[exp{Zθ}x]1/σ-1 

where  

S0(t) = exp(-t1/σ) 

h0(t) = (1/σ) t1/σ-1 

 



Parametric Regression Model: exponential 
proc lifereg data = unos_c; 

 class yearsperf; 

 model fu*death(0) = txtype age yearsperf /dist=exponential; 

run; 

    The LIFEREG Procedure 

                                 Type III Analysis of Effects 

                                                     Wald 

                        Effect           DF    Chi-Square    Pr > ChiSq 

                        txtype            1       52.8909        <.0001 

                        age               1       29.7959        <.0001 

                        yearsperf         2        4.5849        0.1010 

 

                      Analysis of Maximum Likelihood Parameter Estimates 

 

                                           Standard   95% Confidence     Chi- 

       Parameter               DF Estimate    Error       Limits       Square Pr > ChiSq 

       Intercept                1   3.9121   0.2047   3.5109   4.3133  365.19     <.0001 

       txtype                   1  -0.7011   0.0964  -0.8900  -0.5121   52.89     <.0001 

       age                      1   0.0470   0.0086   0.0301   0.0638   29.80     <.0001 

       yearsperf     1990-1994  1   0.3885   0.1874   0.0212   0.7558    4.30     0.0382 

       yearsperf     1995-1999  1   0.3977   0.1929   0.0196   0.7757    4.25     0.0392 

       yearsperf     2000-2002  0   0.0000    .        .        .         .        . 

       Scale                    0   1.0000   0.0000   1.0000   1.0000 

       Weibull Shape            0   1.0000   0.0000   1.0000   1.0000 

 

             Lagrange Multiplier Statistics 

                             Parameter     Chi-Square    Pr > ChiSq 

                             Scale           136.9235        <.0001 



Parametric Regression Model: exponential 

. streg txtype age i.yearsperf, dist(exp)  

------------------------------------------------------------------------------ 

          _t | Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      txtype |   2.045767   .1966766     7.45   0.000     1.694428    2.469956 

         age |   .9536641   .0081702    -5.54   0.000     .9377845    .9698125 

             | 

   yearsperf | 

       1995  |   .9991544   .0985305    -0.01   0.993     .8235544    1.212196 

       2000  |    1.51563   .2801217     2.25   0.024     1.055049    2.177279 

             | 

       _cons |   .0135528   .0015876   -36.72   0.000     .0107725    .0170505 

------------------------------------------------------------------------------ 

 

. streg txtype age ib(2000).yearsperf, dist(exp) nohr 

------------------------------------------------------------------------------ 

          _t |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      txtype |   .7157727   .0961383     7.45   0.000     .5273451    .9042003 

         age |  -.0474438   .0085672    -5.54   0.000    -.0642351   -.0306525 

             | 

   yearsperf | 

       1990  |  -.4158315   .1848219    -2.25   0.024    -.7780758   -.0535872 

       1995  |  -.4166775    .190232    -2.19   0.028    -.7895253   -.0438296 

             | 

       _cons |  -3.885333   .2022253   -19.21   0.000    -4.281687   -3.488979 

------------------------------------------------------------------------------ 


