
General Linear Model (Chapter 4): Part 3 

 

• Examining moderators (i.e interactions) 

• Examining linearity and testing for trend with categorical predictors 

• Assessing the model: heteroscedasticity, outliers, multicollinearity 



Implication of Main Effects model 
 

 

 

 

 

 

 

 

 

 

 

 

KEY ASSUMPTION: Every variable has the same effect on the outcome 
within every other category of every other variable, e.g. the effect that sports 
has on GPA is the same for both cohorts. Or visa versa, the effect that cohort 
has on GPA is the same whether the kid plays sports or not. 
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How to obtain the Estimates on previous plot 
proc glm data = gpa_c; 

 class race; 

 model gpa = mvpa_hours dgender numcohort ses_s c_numsport race /solution; 

 estimate "no sport junior high" c_numsport 0 numcohort 0 

  intercept 1 dgender .5 ses_s 3 race .52 .16 .06 .20 .03 .03 mvpa_hours 6.6; 

 estimate "sports junior high" c_numsport 1 numcohort 0 

  intercept 1 dgender .5 ses_s 3 race .52 .16 .06 .20 .03 .03 mvpa_hours 6.6; 

 estimate "no sports high school" c_numsport 0 numcohort 1 

  intercept 1 dgender .5 ses_s 3 race .52 .16 .06 .20 .03 .03 mvpa_hours 6.6; 

 estimate "sports high school" c_numsport 1 numcohort 1 

  intercept 1 dgender .5 ses_s 3 race .52 .16 .06 .20 .03 .03 mvpa_hours 6.6; 

run; 

                                             Standard 

Parameter                    Estimate           Error    t Value    Pr > |t| 

no sport junior high       2.83434336      0.06297755      45.01      <.0001 

sports junior high         2.96297904      0.05271679      56.21      <.0001 

no sports high school      2.69010261      0.04737569      56.78      <.0001 

sports high school         2.81873829      0.03963993      71.11      <.0001 

                                       Standard 

Parameter            Estimate             Error    t Value    Pr > |t| 

Intercept         1.973181868 B      0.16151324      12.22      <.0001 

mvpa_hours        0.006178674        0.00603294       1.02      0.3060 

dgender           0.240793587        0.05392039       4.47      <.0001 

numcohort        -0.144240750        0.05887527      -2.45      0.0145 

ses_s             0.142327935        0.02255155       6.31      <.0001 

c_numsport        0.128635679        0.05905180       2.18      0.0296 

race       1      0.354133454 B      0.14246109       2.49      0.0131 

race       2      0.084365698 B      0.14952955       0.56      0.5727 

race       3     -0.178735243 B      0.17053048      -1.05      0.2948 

race       4      0.442756541 B      0.14874401       2.98      0.0030 

race       6     -0.082448488 B      0.20020479      -0.41      0.6806 

race       7      0.000000000 B       .                .         . 

* In Stata, use  

-lincom- command 



Implication of Main Effects model 

 

 

 

 

 

 

 

 

 

 

 

 

Model assumes that slope of MVPA on GPA is the same within every race 

category. Or visa versa, the effect that race has on GPA is the same for every 

level of MVPA. 



Interactions or moderators or effect modifiers 

Interactions or moderators or effect modifiers 

• What if we want to examine whether sports have a differential effect on GPA 

in junior high as compared to high school. 

• What if we are interested to see if MVPA relates to GPA differently across the 

races? 

 

These questions can be addressed by including an interaction term (a product 

term) as another predictor into the linear model.  

 

Notice that in both questions above, we have identified the “predictor of 

interest” and the modifier of interest in the way the question is asked. What is 

the predictor of interest and what is the modifier? 

 

Despite the question of interest, when we examine an interaction, both 

variables in the interaction are moderating each other. 



Include interaction term - Sports*cohort 
. reg gpa mvpa_hours i.c_numsport##i.numcohort gender ses_s i.race 

      Source |       SS       df       MS              Number of obs =    1000 

-------------+------------------------------           F( 11,   988) =   12.74 

       Model |  97.2019287    11  8.83653897           Prob > F      =  0.0000 

    Residual |  685.541821   988   .69386824           R-squared     =  0.1242 

-------------+------------------------------           Adj R-squared =  0.1144 

       Total |   782.74375   999  .783527277           Root MSE      =  .83299 

-------------------------------------------------------------------------------------- 

                 gpa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

---------------------+---------------------------------------------------------------- 

          mvpa_hours |   .0062441   .0060288     1.04   0.301    -.0055867    .0180748 

        1.c_numsport |  -.0040722   .1039472    -0.04   0.969    -.2080549    .1999104 

         1.numcohort |  -.2639563   .0970597    -2.72   0.007     -.454423   -.0734895 

                     | 

c_numsport#numcohort | 

                1 1  |   .1880543   .1212626     1.55   0.121    -.0499074    .4260161 

                     | 

              gender |   .2435666   .0539118     4.52   0.000     .1377719    .3493614 

               ses_s |   .1420196   .0225364     6.30   0.000     .0977948    .1862443 

                     | 

                race | 

                  2  |  -.2583253   .0771352    -3.35   0.001    -.4096929   -.1069576 

                  3  |  -.5272124   .1134827    -4.65   0.000    -.7499071   -.3045176 

                  4  |   .0921568   .0763627     1.21   0.228     -.057695    .2420086 

                  6  |  -.4220401    .153544    -2.75   0.006    -.7233499   -.1207302 

                  7  |  -.3373028   .1427731    -2.36   0.018    -.6174762   -.0571295 

                     | 

               _cons |    2.40941   .1241965    19.40   0.000     2.165691     2.65313 

-------------------------------------------------------------------------------------- 

Why 11 d.f. for whole model? Notice the interaction has 1 d.f. because (2-
1)*(2-1). Notice the interaction is not significant with p-value = .121. 



Interpretation of interaction term - Sports*cohort 

Ignoring the non-significant p-value, we can interpret the interaction term 

between sports and cohort as:  

The effect that sports has on GPA for kids in High school is 0.188 points 

higher than the effect sports has in Jr. High. This also can be turned around the 

other way  remember the moderate each other), the difference between High 

school and Jr high GPA is 0.188 points higher for those in sports compared to 

those who aren’t in sports. 
 

Note: in the original study, a significant sport*cohort interaction was 

identified. Here we are only using a proportion of the original data (<25%), so 

the test is under-powered. In general, test for interaction requires larger sample 

size than that for main effects. 
 

SAS code: 
proc glm data = gpa_c; 

 class race; 

 model gpa = mvpa_hours dgender numcohort ses_s c_numsport 

  race c_numsport*numcohort/solution; 

run; 



Interaction 
  

 Sports 

(α) 

Junior/high 

(β) 

Interaction 

(γ) 

Change in 

GPA 

1 1 1 α + β + γ 

1 0 0 α 

0 1 0 β 

0 0 0 

Interpretation of Interaction term: The effect that sports has on 

GPA for kids in High school (α + β + γ – β = α + γ ) is 0.188 points 

higher than the effect sports has in Jr. High (α). 

Alternatively, the difference between High school and Jr High 

GPA is 0.188 points higher for those in sports (α + β + γ – α = β + 

γ ) compared to those who aren’t in sports (β). 



Interactions - Plotting helps interpretation 
 

 

 

 

 

 

 

 

 

 

 

 

 

What is the expected difference in GPA between those playing sports and those 
who aren’t playing sports - in Jr. High, in High School? For kids who are Not 
playing sports, what is the difference between their GPA in High school versus Jr. 
High? For kids playing sports, what is the difference in their GPA if they are in 
High school versus Jr. High? What is the statistical significance for these 
questions? 
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Estimating specific effect in models with interactions 
proc glm data = gpa_c; 
 class race; 
 model gpa =mvpa_hours dgender numcohort ses_s c_numsport 
  race c_numsport*numcohort/solution; 
 estimate "no sport junior high" c_numsport 0 numcohort 0 c_numsport*numcohort 0 
  intercept 1 dgender .5 ses_s 3 race .52 .16 .06 .20 .03 .03 mvpa_hours 6.6; 
 estimate "sports junior high" c_numsport 1 numcohort 0 c_numsport*numcohort 0 
  intercept 1 dgender .5 ses_s 3 race .52 .16 .06 .20 .03 .03 mvpa_hours 6.6; 
 estimate "no sports high school" c_numsport 0 numcohort 1 c_numsport*numcohort 0 
  intercept 1 dgender .5 ses_s 3 race .52 .16 .06 .20 .03 .03 mvpa_hours 6.6; 
 estimate "sports high school" c_numsport 1 numcohort 1 c_numsport*numcohort 1 
  intercept 1 dgender .5 ses_s 3 race .52 .16 .06 .20 .03 .03 mvpa_hours 6.6; 
 estimate "In sports -> High school-Jr High" numcohort 1 c_numsport*numcohort 1; 
 estimate "Not in sports -> High school-Jr High" numcohort 1; 
 estimate "In HS -> Sport-No sport" c_numsport 1 c_numsport*numcohort 1; 
 estimate "In Jr High-> Sport-No sport" c_numsport 1; 
run; 
 
                                                            Standard 
Parameter                                   Estimate           Error    t Value    Pr > |t| 
 
no sport junior high                      2.92114934      0.08422429      34.68      <.0001 
sports junior high                        2.91707710      0.06042522      48.28      <.0001 
no sports high school                     2.65719306      0.05188065      51.22      <.0001 
sports high school                        2.84117514      0.04217126      67.37      <.0001 
In sports -> High school-Jr High         -0.07590196      0.07350684      -1.03      0.3021 
Not in sports -> High school-Jr High     -0.26395628      0.09705966      -2.72      0.0067 
In HS -> Sport-No sport                   0.18398208      0.06896277       2.67      0.0078 
In Jr High-> Sport-No sport              -0.00407224      0.10394721      -0.04      0.9688 

 

Recall the interaction effect is 0.1881....What is being compared to get that 
number? 



Interacting a continuous and a categorical variable 
proc glm data = gpa_c; class race; 
     model gpa = mvpa_hours dgender numcohort ses_s c_numsport race mvpa_hours*race/solution; 
run; 
 

Source                      DF     Type III SS     Mean Square    F Value    Pr > F 
mvpa_hours                   1      0.00038359      0.00038359       0.00    0.9813 
dgender                      1     13.73139451     13.73139451      19.71    <.0001 
numcohort                    1      4.08914812      4.08914812       5.87    0.0156 
ses_s                        1     27.73392947     27.73392947      39.81    <.0001 
c_numsport                   1      3.09573791      3.09573791       4.44    0.0353 
race                         5     12.22741867      2.44548373       3.51    0.0038 
mvpa_hours*race              5      1.73059819      0.34611964       0.50    0.7788 
 
                                            Standard 
Parameter                 Estimate             Error    t Value    Pr > |t| 
Intercept              1.956900672 B      0.24510684       7.98      <.0001 
mvpa_hours             0.008832261 B      0.03015503       0.29      0.7697 
dgender                0.240107747        0.05408149       4.44      <.0001 
numcohort             -0.143077735        0.05905484      -2.42      0.0156 
ses_s                  0.142828347        0.02263646       6.31      <.0001 
c_numsport             0.124941860        0.05926874       2.11      0.0353 
race            1      0.347018738 B      0.24597593       1.41      0.1586 
race            2      0.100044366 B      0.25437714       0.39      0.6942 
race            3     -0.191711178 B      0.28710276      -0.67      0.5045 
race            4      0.473732170 B      0.25392450       1.87      0.0624 
race            6      0.280254490 B      0.36120364       0.78      0.4380 
race            7      0.000000000 B       .                .         . 
mvpa_hours*race 1      0.000443924 B      0.03105651       0.01      0.9886 
mvpa_hours*race 2     -0.002468278 B      0.03304383      -0.07      0.9405 
mvpa_hours*race 3      0.002818875 B      0.03824333       0.07      0.9413 
mvpa_hours*race 4     -0.005313166 B      0.03324176      -0.16      0.8730 
mvpa_hours*race 6     -0.047206110 B      0.04239700      -1.11      0.2658 
mvpa_hours*race 7      0.000000000 B       .                .         . 



Interacting a continuous and a categorical variable 

 

What would the Total Model d.f. be? 

Why 5 d.f. for the interaction? 

What does the interaction term being non-significant imply? 

How do we interpret the estimates for the interactions? 

 

Note: Although the interaction terms are non-significant, the p-values for 

RACE main effects become less significant compared to the main effects only 

model.  Why? 



Plot interactions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There is not enough statistical evidence to say that these lines are NOT 

PARALLEL. P-value for interactions = 0.7788 
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Estimating groups specific slopes in presence of interaction 

In SAS:  
estimate "slope when race = 1" mvpa_hours 1 race*mvpa_hours 1 0 0 0 0 0; 

estimate "slope when race = 2" mvpa_hours 1 race*mvpa_hours 0 1 0 0 0 0; 

estimate "slope when race = 7" mvpa_hours 1 race*mvpa_hours 0 0 0 0 0 1; 

 

                                            Standard 

Parameter                   Estimate           Error    t Value    Pr > |t| 

slope when race = 1       0.00927618      0.00798589       1.16      0.2457 

slope when race = 2       0.00636398      0.01378219       0.46      0.6444 

slope when race = 7       0.00883226      0.03015503       0.29      0.7697 

 

In Stata: 
xi: reg gpa c_numsport numcohort gender ses_s i.race*mvpa_hours 

lincom mvpa_hours    // slope for race==1 

lincom mvpa_hours+_IracXmvpa__2  // slope for race==2 

lincom mvpa_hours+_IracXmvpa__7  // slope for race==7 

or: 
reg gpa c_numsport numcohort gender ses_s ib(last).race##c.mvpa_hours 

lincom mvpa_hours+1.race#c.mvpa_hours // slope for race==1 

lincom mvpa_hours+2.race#c.mvpa_hours // slope for race==2 

lincom mvpa_hours    // slope for race==7 



Including a moderator interaction versus stratifying by 

the moderator  

Notice that we could obtain estimates for the different slopes relating MVPA to 

GPA for each of the different race categories by running 6 separate regressions 

(one for each race). This is called a stratified analysis (or subgroup analysis) 

and is a common way to examine differential effects by group. 

• Stratified analysis are intuitively more straightforward since no need to take 

linear combinations of estimates to get effects of interest. 

• But, stratified analyses do not provide a way to test overall interaction 

effect. Hence you are doing multiple testing without any assurance that it 

was necessary in the first place and thus are inflating the Type 1 error. 

• And, stratified analyses may be less powerful because separate effects are 

being estimated for all other “control” variables in the model whereas in the 

full model with an interaction, there is only one effect for each of the non-

interacting variables. For example in stratified analyses, we would get a 

different gender, cohort, ses and c_numsport effect for each of the 

regressions, whereas in the interaction model these “controlled” effects are 

common to all races. 



When to look at interactions 

• Pre-planned moderator of targeted predictor of interest 

• Stratify analyses if not interested in testing differences across levels of 

moderator but believe there are differences. (E.g. Common to stratify 

analyses by gender) 

• No overall effect found for target predictor of interest, hypothesize post-hoc 

that perhaps there are some subgroups which have effects and others that 

do not. 

• Interactions amongst control variables - not likely to influence confounding 

effect but can improve MSE and hence smaller standard errors. 

• “In examining interactions, it is not enough to show that the predictor of 

primary interest has a statistically significant association with the outcome 

in a subgroup, especially when it is not statistically significant overall. So-

called subgroup analysis of this kind can severely inflate the type-I error 

rate, and has a justifiably bad reputation in the analysis of clinical trials. 

Showing that the subgroup-specific regression coefficients are statistically 

different by testing for interactions sets the bar higher, is less prone to type-

I error and thus more persuasive (Brookes et al 2001)” from Vittering et al 

text. 



More on interactions 

 

• Higher order interactions can also be included in the model 

• It is often difficult to find interactions between variables that are highly 

correlated. 

• When interpreting interactions between continuous variables...usually 

easiest to present result in terms of dichotomized (High/Low) values of at 

least one of the continuous variables. 



Examining the linearity assumption 

Continuous variables which are included into the linear model implicitly are 

assumed to be linearly related to the outcome. 

• If this assumption is wrong, slope estimates may be biased 

• Use plots to examine linear assumption - LOESS is a useful visualization 

tool 

• If the relationship is clearly not linear... 

– Can consider including polynomial terms - e.g. quadratic. Common to 

see this done for control variables which are not the primary focus, 

often done for age (careful about interpretation of coefficients) 

– Can consider transformations of the predictor, of the outcome - (careful 

about interpretation) 

– Can consider categorizing the variable - Generic method that does not 

require a functional form to be determined and usually is easier in 

terms of interpretation. 

• Weakness: it will likely require more degrees of freedom than using 

a functional form (K-1 d.f. where K is number of categories), hence 

can be less powerful. 



LOESS (LOWESS): Locally Weighted Scatterplot Smoother 

 

• LOESS is a technique for describing the relationship between a predictor 

and the expected value of an outcome given that predictor. That is, it 

describes the relationship between X and E(Y |X). 

• Basically the method bins the data according to overlapping small bins in 

the X variable, then within each of the those bins it performs a linear 

regression of the relationship between Y and X in that bin. It then moves 

the bin across the range of X and gets the predicted value of Y for any 

arbitrary value of X. 

• The one thing controlling the result is the bin size...larger bins lead to 

smoother relationships, smaller bins lead to more bumpy relationships. 

• The LOESS method is very useful as an exploratory method for assessing 

the reasonableness of linear relations between a predictor and an outcome. 

It is also a useful tool for assessing for trends in residuals (which are not 

supposed to exhibit trends). 



Examining relation between MVPA and GPA 
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Examining relation between MVPA and GPA: LOESS 

SAS: proc loess;  

 model gpa = mvpa_hours 

/smooth=.2 .4 .8; run; 

Stata: lowess gpa mvpa_hours,       

 bw(#) 

R: plot(loess.smooth(mvpa_hours,gpa, 

 span = #)) 
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LOESS (LOWESS): Deciding what to do 

 

• LOESS provides some indication that there may be a leveling off of the 

relationship between MVPA and GPA up near 10 hours/week. 

 

• The main drawback of LOESS is there is no equation that comes out of it. 

There are no coefficients (i.e. parameters) that can be tested and used to 

describe the relationships. There is only the PLOT. 

 

• Using this LOESS information along with substantive knowledge about 

Physical Activity guidelines, the researchers decided to CUT the MVPA 

hours into categories: e.g., < 2.5 hours per week, 2.5 − 7 hours per week, 

and > 7 hours per week. This 3 category variable was then used as the 

predictor rather than MVPA_HOURS. 



Different strategies for deciding where to make cut points 

 

1. Use substantive knowledge as cut points 

2. Use equal spacing 

3. Use quantiles (e.g. quartiles) leads to equal sizes in each category but 

different interval lengths 

4. Make cuts at places which can capture explicit features of nonlinearity 



Testing for linear trends with categorical predictors 

 

 

 

 

 

 

 

 

 

 
 

---------------------------------------------------------------------- 

   mvpa_c |     N(gpa)   mean(gpa)     sd(gpa)    min(gpa)    max(gpa) 

----------+----------------------------------------------------------- 

       0- |        206     2.68932    .9122914          .5           4 

     2.5- |        395    2.763291     .909088           0           4 

       7- |        399    2.899749    .8379953           0           4 

---------------------------------------------------------------------- 
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Test a linear CONTRAST of the coefficients 

Depending on the number of levels of the categorical predictor, here are 

contrasts that can be used to test for a linear trend with equally spaced 

categories. 

Note these can be scaled by any constant and will yield the same overall test. 

Note that add to zero. 

 

 



Forming and testing a contrast 

SAS: 
data gpa_c; set gpa; 

 dgender = gender - 1; 

 mvpa_c = 0; 

 if mvpa_hours> 2.5 && mvpa_hours<7 then mvpa_c = 1; 

 if mvpa_hours>=7 then mvpa_c = 2; 

run; 

 

proc glm data = gpa_c; 

 class mvpa_c race; 

 model gpa = mvpa_c gender numcohort ses_s c_numsport race/solution; 

 lsmeans mvpa_c; 

 contrast "trend in mvpa" mvpa_c -1 0 1; ** provide Type 3 SS; 

 estimate "trend in mvpa" mvpa_c -1 0 1; ** provide estimated Lβ; 

run; 

 

Stata: 
egen mvpa_c = cut(mvpa_hours), at(0, 2.5, 7, 20) icode label 

xi: reg gpa i.mvpa_c c_numsport numcohort gender ses_s i.race  

lincom _Imvpa_c_2  <-- why code in this way? 

 

 



SAS Output for using 3 categories for MVPA 
                      Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                       11      353.247426       32.113402      46.81    <.0001 

Error                     4103     2815.043947        0.686094 

Corrected Total           4114     3168.291373 
 

R-Square     Coeff Var      Root MSE      gpa Mean 

0.111495      29.44443      0.828308      2.813123 

 

Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

mvpa_c                       2      11.3850694       5.6925347       8.30    0.0003 

(...) 

 

                                      Standard 

Parameter            Estimate             Error    t Value    Pr > |t| 

mvpa_c     0     -0.144412284 B      0.03805095      -3.80      0.0001 

mvpa_c     1     -0.091447055 B      0.02989343      -3.06      0.0022 

mvpa_c     2      0.000000000 B       .                .         . 

(...) 

 

Contrast                    DF     Contrast SS     Mean Square    F Value    Pr > F 

trend in mvpa                1      9.88236577      9.88236577      14.40    0.0001 

(from CONTRAST statement) 

                                            Standard 

Parameter                   Estimate           Error    t Value    Pr > |t| 

trend in mvpa             0.14441228      0.03805095       3.80      0.0001 

(from ESTIMATE statement) 

 



Interpretation of the linear contrast 

 

Is test for trend significant??? Is it positive or negative? Look at the Estimate 

statement. 

– Significant p-value suggests there is a “linear” trend across the physical 

activity categories 

– Positive trend suggests the effect of physical activity on gpa will 

increase with the level of physical activity 

How can we test for departure from linearity??? COMPARE Contrast SS with 

Type III SS for c_mvpa_hours 

– The two SS correspond to different hypothesis 

 

 

(See next for details) 



Contrast coefficients 

• Suppose X is a categorical variable with k categories: x1, …, xk   

 The corresponding mean outcomes in each category: μ1, …, μk 

 (Note that μi corresponds to the estimated coefficient for dummy variable 

of ith category) 

• We would like to test for a linear trend:  

 H0: μ1 = … = μk    vs    Ha: μi = β0 + β1xi, β1 ≠ 0 

 i.e., the points (x1, μ1), …, (xk, μk) fall along a straight line with non-zero 

slope.  

• Alternative, we define the contrast coefficients: 

 

 and test the hypothesis:  

 

 

 (Recall: what’s the estimated slope between μx and Cx?) 
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Contrast coefficient (cont.) 

• Regress μx and Cx, the slope: (recall the formula from simple linear regression) 

 

 

 

 Therefore:  

  

• If we fit a line through the parameter estimates, the linear contrast is to test 

whether the slope of the line is zero or not. 

• If we want to further test deviation from the line, we can add the categorical 

variable to the model as both a continuous variable and a set of dummy 

variables, e.g.,  

 . xi: reg gpa mvpa_c i.mvpa_c ... 

 and then test the significance of the dummy variables: 

 . testparm _Imvpa*  
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Line through adjusted means 
The GLM Procedure 

Least Squares Means 

 

mvpa_c      gpa LSMEAN 

0           2.59329550 

1           2.64626073 

2           2.73770778 
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Test for deviation from linearity 
. reg gpa mvpa_c i.mvpa_c c_numsport numcohort gender ses_s i.race  

note: 2.mvpa_c omitted because of collinearity 

------------------------------------------------------------------------------ 

         gpa |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      mvpa_c |   .0722061   .0190255     3.80   0.000     .0349059    .1095064 

             | 

      mvpa_c | 

          1  |  -.0192409   .0270673    -0.71   0.477    -.0723075    .0338257 

          2  |          0  (omitted) 

             | 

  c_numsport |   .2008199   .0289153     6.95   0.000     .1441301    .2575096 

   numcohort |  -.0928761   .0282776    -3.28   0.001    -.1483155   -.0374367 

      gender |    .240398   .0264833     9.08   0.000     .1884763    .2923197 

       ses_s |   .1208151   .0111018    10.88   0.000     .0990495    .1425807 

             | 

        race | 

          2  |  -.2257744   .0377771    -5.98   0.000     -.299838   -.1517109 

          3  |  -.4121535   .0592663    -6.95   0.000    -.5283477   -.2959594 

          4  |   .1965556   .0379981     5.17   0.000     .1220586    .2710526 

          6  |  -.4060024   .0728719    -5.57   0.000    -.5488708   -.2631341 

          7  |  -.2799038   .0748293    -3.74   0.000    -.4266098   -.1331978 

             | 

       _cons |   2.235967   .0575847    38.83   0.000      2.12307    2.348865 

------------------------------------------------------------------------------ 

 



Model assumptions for linear regression 

• The random error ε  is independent and identically distributed with: 

– E(ε) = 0 

– var(ε) = σ2  (equal variance) 

• Linearity: the mean of Y, E(Y|X), is Xβ (i.e., the mean model is correctly 

specified) 

• Normality: ε ~ N(0, σ2) 



Model diagnostics: residuals 
• “raw” Residual: 

 

 

 

• Standardized residual: 

  i.e., zi is approximately unit-independent. 

• Studentized residual: 

 

 where hii = ith element on the diagonal of H matrix (leverage for ith sample).   

• Jackknife residual:  

 

 where         is an estimate of σ2, with ith sample deleted. 

• PRESS residual: 

 

 where        is the fitted value of ith outcome based on all samples without ith one. 

 (also called prediction error, useful for outlier detection). 
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Linearity 

• Treating a variable as categorical, then plot the estimated coefficients 

against their category-specific means. 

– Linear trend test (see the GPA vs MVPA example) 

• LOESS plot: only for simple linear regression 

– Nonparametric, “approximate the regression line under the weaker 

assumption that it is smooth but not necessarily linear” 

– Weakness: 

• Need high-dimension plot for multiple predictors 

• Nonparametric smoothers work less well in higher dimensions 

• Instead of checking the predictors, we can check the residuals from 

multiple regression 



Linearity: RVP plot 

• Residual versus predictor (RVP) plot: plot ei vs. each covariate Xj 

 

 

 

 

 

 

 

 

 

 

– If relationship between Xj and E[Y] modeled correctly, plot should be a 

random scatter. 

– Trend in plot may suggest modifications to model. 

– Weakness: ei  accounts for contribution of other covariates – can’t see 

“correct” relationship between each Xj  and E[Y]. 

-3
-2

-1
0

1
2

R
e
s
id

u
a
ls

0 5 10 15
mvpa_hours



Linearity: CPR plot 

• Component-plus-residual (partial residual) plot 

 

 

 

 

 

 

 

 

 

 

– RVP plots cannot distinguish between monotone and non-monotone 

nonlinearity.  

– The partial residuals for observation i for the variable Xj: 

𝑒𝑖
(𝑗) = 𝑒𝑖 + 𝛽𝑗 𝑋𝑖𝑗 

– The fitted line and LOWESS line should close to each other. 
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Homoscedasticity (equal variance) 

• Residual versus fitted (AVF) plot: plot ei vs.  

 

 

 

 

 

 

 

 

 

 

– Should be a random scatter 

– Common departure: ei increasing with      implying that the variance is 

an increasing function of the mean. 

• Residual versus predictor (RVP) plot: plot ei vs. each covariate Xj 
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Homoscedasticity: statistical tests 

• Formal statistical tests: 

1. Breusch-Pagan (or Godfrey or Lagrange Multiplier) test. The basic idea 

is to examine whether there is some variation in the squared residuals 

which can be explained by variation in the predictor variables. Breusch-

Pagan tests the hypothesis that                              , where Z is a subset 

and/or function of predictors in X. The model is homoscedastic if α = 0. 

The null hypothesis being tested is that α = 0, so rejecting using this test 

implies heteroscedasticity. Could perform this test by explicitly doing the 

regression of the squared residuals.  
• SAS: use PROC MODEL and the /breusch option for the fit command.  

• Stata: -bpagan- (user-written command) or -estat hettest- (newer version). 

2. White’s general test. Basically a special case of the Breusch-Pagan test. 

For White’s test, the Z considers all possible first and second order 

combinations of predictors. The null hypothesis is homoscedasticity, so 

rejecting implies heteroscedasticity.  
• SAS: use /spec in model statement of PROC REG to get White’s test. Can also 

use PROC MODEL and the /white option for the fit command.  

• Stata: -whitetst- (user-written command) or -estat imtest, white- (newer version). 



Fixes or ways to account for heteroscedasticity 

• Given a known model for the heteroscedasticity, use this to form weighted 

least squares (WLS) estimator.  Given known values for variance-

covariance (Ω), can use “weight” statement in most SAS PROCs or Stata 

commands.  

– Pros: estimator of β is more efficient than OLS and standard errors are 

correct.  

– Cons: Often don’t know Ω. 

• Empirically model the heteroscedasticity (e.g. using regression formula 

considered in Breusch-Pagan test), obtain predicted values from regression 

which are estimates of σ2 . Use these estimates to form Ω  and plug this in to 

WLS, called the Feasible weighted least squares (FWLS) estimator. Also 

called FGLS (feasible generalized least squares).  

– Pros: provides a way to directly estimate heteroscedasticity and 

asymptotically is equivalent to WLS if Ω  is a consistent estimator of Ω.  

– Cons: modeling error variance introduces more complexity, need to be 

careful to delineate what is important for the mean verses what explains 

the variability. 



Fixes or ways to account for heteroscedasticity 

• Use a variance stabilizing transformation, then proceed with OLS. That is, 

take the log or square root of the outcome variable and/or predictors.  

– Pros: simple. 

– Cons: when results need to be interpreted on the original scale, not 

always straightforward how to back-transform. 

• Use robust standard errors or “heteroscedastic consistent (HC) standard 

errors”. Continue to use OLS since it is unbiased even in the presence of 

heteroscedasticity, but use a “robust” standard error estimator. This is called 

the White, Eicker or Huber estimator.  

– Pros: easy to implement without need to have a model for 

heteroscedasticity. 

– Cons: No specific obvious cons, but it is still important to look for 

systematic reasons (mean model mis-specification) for why there is 

heteroscedasticity in the first place. 

 SAS: use Proc REG with the /ACOV option 

 Stata: use the –vce(robust)- option 

• Carefully examine for mis-specification of the mean model. Missing 

covariates, or interactions, or nonlinear predictors can lead to what appears 

to be heteroscedastic errors. 



Independence 

• Carefully check study design for potential correlation between observations 

– e.g., time-ordered (serial correlation), cluster data, repeated measures 

• Checking for autocorrelation: 

– Plot ei vs time 

– Plot ei vs ei-1 

– Runs test: check sequence of time-ordered ei with same sign 

– Durbin-Watson test: AR-1 correlation 

• Cluster data: 

– Long format: one-way ANOVA 

– Wide format: Pearson correlation coefficient 

 



Normality 

• Histogram of residuals 

– Should be symmetric, bell-shaped, light-tailed 

• Box/whisker plot 

– 25th and 75th percentiles should be equally distant from median 

– More useful than histogram when n low 

• Summary statistics 

– Median should close to mean 

• Q-Q plot 

• Formal statistical tests, e.g., Shapiro-Wilks test 

– Such tests are often sensitive to sample size: “often failing to reject the 

null hypothesis of normality in small samples where meeting this 

assumption is most important, and conversely rejecting it even for 

small violations in large data sets where inferences are relatively robust 

to departures from normality.” 



Normality: plots 
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Outliers and influential observations 

• An observation can be outlying in the outcome or the predictor variables. 

• An outlying observation can appear not to be outlying when looking only 

marginally at any of the variables, but can be found to be outlying in terms 

of not being well described by the model relating the variables to one 

another. 

• Outlier: data with unusually large residuals. 

– Model fit could be poor at outlier points. 

– May have disproportionately great influence on estimates 

– May not represent target population 

• Residuals can be examined to detect outliers that are not well described by 

the data. 

– Standardized residuals, e.g. > 3 or < −3 might be considered for further 

examination. 

• Influential observations are those that have high leverage (i.e. outlying in 

the x variable) and thus have potential to change parameter estimates 



Leverage 
• Leverage: hii = ith element on the diagonal of H matrix  

– Determined by covariates only 

– For simple regression: 

 

 

  hii  large when Xi is distant from the mean value (reflecting outlyingness in X 

space). 

– Reflects impact of Xi on 

 

 

– Criteria for “large” hii : 

• hii > 2p/n 

• hii > 4/n 

• hii > .5 

 

 

2

2

1 i

ii

i

i

X X
h

n X X


 



 
1

1

ˆ
n n

T T

i i l l ii i il l

l i l

Y X X X X Y h Y h Y


 

   

ˆ
iY



Outlying, high-leverage, and influential points 



Detecting Influential Points 
Influential observations: pull the regression line toward their direction.  Typically, 

– High leverage (not all high-leverage points are influential) 

– Departure from trend in remaining points (i.e., large residual) 

• Cook’s distance: 

 

 

 Influential: Di > F.5, p, n-p (not test of significance), where p = number of covariates. 

• DFFITS: 

 

 Influential: 

• DFBETAS:  
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DFBETAS (corresponding to the three scenarios described 

previously) 

 



Outliers: added variable plot 

• Added variable (partial-regression leverage) plot:  

 

 

 

 

 

 

 

 

 

 

 

 

– Set X = [Xj , X-j ], where X-j contains all covariates except Xj . 

• Set e(Y| X-j ) as the residuals for Y regressed on X-j . 

• Set e(Xj | X-j ) as the residuals for Xj regressed on X-j . 

– Plot e(Y| X-j ) vs e(Xj | X-j ) 

• Both sets of residuals are covariate-adjusted. 

• Project multidimensional data back to the two-dimensional world 
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Fixes to outliers and influential observations 
• Check for mistake in data entry, also ask yourself whether observation is not 

actually in target population 

• If outlier is a legitimate value, need to decide whether to keep in or delete – can 
do sensitivity analysis and report varying results. 

• Robust regression. Robust regression is a compromise between deleting the 
outlying points, and allowing them to violate the assumptions of OLS 
regression. It is a kind of weighted least squares regression where the weights 
are inversely related to the residuals. There are several different methods for 
weighting...SAS version 9 uses PROC ROBUSTREG, Stata uses -rreg-. 

• Robust regression is more computationally intensive than OLS but is likely to 
become more and more popular now that SAS and other statistical software 
implement it. 

• Note: Robust standard errors address the problem of errors that are not 
independent and identically distributed and do not change the coefficient 
estimates provided by OLS (or ML), but only change the standard errors and 
significance tests. Robust regression uses a weighting scheme that causes 
outliers to have less impact on the estimates of regression coefficients, hence 
producing different coefficient estimates (and likewise standard errors) than 
OLS does. 



Collinearity 

• Collinearity or “multicollinearity” denotes correlation between predictors 

high enough to make the standard errors of the regression coefficient 

estimates become large. 

• Not necessarily a problem:  

1. if only interested in prediction, collinearity is not likely to increase 

prediction error  

2. if collinearity exists between “control variables”, not likely to affect 

parameter estimates for target predictors. 

• Collinearity usually pops up as a “problem” when we have a target 

predictor or several potential target predictors which we would expect to 

find significantly related to the outcome, but when they are included in the 

multiple regression (possibly with control variables) they are not significant 

(with large standard errors). This is most likely happening because the 

predictors are highly correlated with one another or else highly correlated 

with control variable(s), i.e. because of collinearity. 



Multicollinearity: VIF 

• In OLS, variance of estimated coefficient can be expressed as: 

 

  

 where Rj
2 is the multiple R2 for the regression of Xj on the other covariates. 

• Variance inflation factor (VIF): 

 

 reflects all other covariates that influence the uncertainty in the coefficient 

estimates. As a rule of thumb, a variable whose VIF values is greater than 

10 may merit further investigation.  

• Also can look for large Pearson correlations between predictors. 
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Fixes to Multicollinearity 

• Examine whether there are some redundant variables (i.e. variables 

measuring essentially the same thing) and choose to eliminate them. 

• If meaningful, create composite variable from those that are highly 

correlated. 

• Carefully consider causal reasoning for including variables and potentially 

drop if in causal pathway. 

• Accept answer as is, finding the target predictor NOT being significant may 

indeed be the right answer (if the effect is truly being confounded) 

• “Admit that data are inadequate to disentangle their effects” (Vittinghoff et 

al.) due to their strong correlation 



Review: Linear regression model 

• Simple and multiple linear regression 

• Ordinary least squares  

• Interpreting regression coefficients - continuous versus categorical 

• Testing regression coefficients, F-test and t-test, standard errors, MSE  

• Understanding effect of correlation between predictors on regression 

coefficients (confounding, mediation, etc.) 

• Effect of centering and standardizing variables  

• Fitted values, Adjusted means (“least square means”)  

• R2 interpretation 

• Interaction: interpretation of coefficients for the interaction 

• LOESS plot 

• Test for linear trend 

• Model assumptions and model diagnostics 

 


