Count outcomes - Poisson regression (Chapter 6)

« Exponential family

 Poisson distribution

« Examples of count data as outcomes of interest

» Poisson regression

 Variable follow-up times - Varying number “at risk” - offset
» Overdispersion - pseudo likelihood

» Using Poisson regression with robust standard errors in place of binomial
log models



The Exponential Family

Assume Y has a distribution for which the density function has the
following form:

y6—b(6)

f(y;9,¢)=exp{ 2(9) +C(y,¢)}

for some specific function a(*), b(*), and c(-, ).
@. canonical (natural) parameter — parameter of interest
¢: scale parameter — nuisance parameter

The above density define an exponential family if ¢ is known; if ¢
unknown, it may or may not define a two-parameter exponential family,
depending on the form of c(y, ¢).

Examples:  Normal
Binomial
Poisson
Negative Binomial
Gamma



Properties of Exponential Family and Generalized Linear
Models

* If ¢ is known in the previous density function, then:
u=E[Y]=b'(0)
Var(Y)=b"(0)a(¢)

» Generalized linear models (GLM):

— We assume the observation are independent with non-constant
variance.

— We extend the linear model by:
* Replacing the linear model for « with a linear model for g(u).
 Replacing the constant variance assumption with mean-variance

relationship.
 Replacing the normal distribution with the exponential family.
 Linear predictor: n = X8 (systematic component)

Link function to link » and u : 7 = g(u) (when # = 6, the corresponding link
function is called the canonical link function)



Poisson distribution

e_ﬂﬂy
y!

The Poisson distribution, Y ~ Poisson(n), Pr(Y = y) = , u>0, is the

most widely-used distribution for counts.

The Poisson distribution assigns a positive probability to every nonnegative
Integer 0, 1, 2, . . ., so that every nonnegative integer becomes a
mathematical possibility (albeit practically zero possibility for most count
values)

The Poisson is different than the binomial, Bin(n, ), which takes on
numbers only up to some n, and leads to a proportion (out of n).

But the Poisson is similar to the binomial in that it can be show that the
Poisson is the limiting distribution of a Binomial for large n and small 7.
Furthermore, because of the simple form of the Poisson distribution, it is
often computationally preferred over the Binomial.



Examples of count data

Number of visits to emergency room during last year. A study looks at the
effectiveness of a new treatment compared to standard care on reducing
emergency room visits controlling for demographics and alcohol and drug
use of individuals. (from VGSM)

Number of damage reports on ships out to sea in the 1960-80. Look for
systematic variables influencing the likelihood of damage occurring to the
ship. (from McCullagh and Nelder 1989)

Length of stay (in days) of hospital admissions. Look for systematic
variables (i.e. insurance type, type of admission, demographics) related to
the average length of stay (from Hardin and Hilbe 2007)

Number of homicides within each census tract throughout the Twin Cities
area. Look at whether there are relationships between homicide rate and
density of alcohol outlets (Jones-Webb R and Wall MM. Neighborhood
Racial/Ethnic Concentration, Social Disadvantage, and Homicide Risk: An
Ecological Analysis of 10 Cities. Journal of Urban Health, 2008.



Examples of count data

Number of injuries that resulted in lost work time during the construction of
the Denver Airport. Look at characteristic of construction contracts and see
If there are things that are related to higher injury rates (form Lowery et al
Am Journal of Industrial Medicine 1998)

Deaths from coronary heart disease after 10 years in a population of British
male doctors. Look at how smoking is related to the risk of death. Have
person time at risk (from Breslow and Day 1987).

Count of number of abstainers of alcohol and how this is related to
treatment. We can use Poisson regression (with robust standard errors) to
estimate common risks in places where we might have computational
problems using binomial regression.



The Poisson Regression model

Let Y; be the observed count for experimental unit i
YilX; ~ Poi(g)
log(;) = X
The log link is the most commonly used, indicating we think that the covariates
Influence the mean of the counts (1) in a multiplicative way, i.e. as a covariate

Increases by 1 unit, the log of the mean increases by p units and this implies the
mean increases by a “fold-change” of or “scale factor” of exp(f3).

* The log link is the canonical link in GLM for Poisson distribution.



Poisson regression for modeling rates

Often we are modeling the count of events within a particular time period, or
within a particular region, or within a particular risk group of people. In each of
these cases what is of interest is to model the RATE.

So given, for example, a specific time period t, we want to model the events
occurring in the time period t. Thus, the Poisson mean p is better described as u
= A+t where A IS the RATE of events.

Yi|Xi ~
log(Ai) =
log(pifti) =
log(pi) =

Poi(A; * t;)

X3

log(p:) — log(t;) = X3
log(t;) + X3

The term log(t;) is known as the offset and it provides the adjustment for the
variable risk sets (e.g. varying time periods followed for each person, or
variable numbers of people at risk). It can be thought of as a predictor but it
does not have a parameter in front of it to be estimated, so it must be treated
different from other predictors in the software.



Poisson regression produces relative rates

Let Y; be the count of events within a risk set t;, and X, predictors of interest.
Consider,

Yi|X; ~ Poi(\ *t;)
log(Ai) = X;3
log(pi) = log(t;) + X3

Now, a change of one unit in a predictor variable relates to £ unit change in

the log RATE (i.e. log(2;)), so if we exponentiate this we have a Relative rate
(or Rate ratio).



Over and Under dispersion

 Recall that the If Y ~ Poi(p) this means that E(Y) = @ AND Var(Y) = . It is
quite common for the equality of the mean and variance to be incorrect for
count data. In other words, Poisson distributional assumption is often not
strictly correct.

« A common cause of overdispersion is there are other variable causing
variability in the outcome which are not being included in the model,
unexplained random variation. Underdispersion does not have an obvious
explanation.

« A common solution is to assume that the variance is proportional to the
mean, i.e. Var(Y) = ou, and estimate the proportionality factor ¢, which is
called the scale parameter, from the data.

» Use the Goodness of fit tests (Pearson or the Residual Deviance) to estimate
the ¢. ¢ = X?/(n — p) or ¢ = Residual Deviance/(n — p).



Adjusting for over/under-dispersion

If  >> 1 we say the data exhibits overdispersion and if it is << 1 it is called
underdispersion. Note when ¢ = 1 this means E(Y) = Var(Y ) which is
supportive of the Poisson assumption.

There is no clear cut decision rules when to decide that there is definitely
over/under dispersion. Common rule of thumb is > 2.

When controlling for over/under dispersion, basically, the parameter
estimates do not change but the standard errors do. All standard errors are
multiplied by sqgrt(¢), hence they get wider in the case of overdispersion and
smaller with underdispersion.

In SAS simply add /scale = deviance OR /scale = pearson to the model
statement.

In Stata add scale(x2) or scale(dev) in the glm function.



Using Poisson regression for incidence rates

The data show the incidence of nonmelanoma skin cancer among women in
Minneapolis-St Paul, Minnesota, and Dallas-Fort Worth, Texas in 1970. One
would expect sun exposure to be greater in Texas than in Minnesota.

--Data from Kleinbaum, D., Kupper, L., and Muller, K. (1989). Applied regression analysis and
other multivariate methods. PWS-Kent, Boston, Massachusetts. And adapted from Scotto, Kopf
and Ruvbach (1974)

input case town str5 age ageyrs pop
1 0 15-24 19.5 172675

16 0 25-34 29.5 123065

30 0 35-44 39.5 96216

71 0 45-54 49.5 92051

102 0 55-64 59.5 72159

130 0 65-74 69.5 54722

133 0 75-84 79.5 32185 * town: 1 = Dallas, 0 = MSP
40 0 85+ 89.5 8328

4 1 15-24 19.5 181343

38 1 25-34 29.5 146207

119 1 35-44 39.5 121374
221 1 45-54 49.5 111353
259 1 55-64 59.5 83004
310 1 65-74 69.5 55932
226 1 75-84 79.5 29007

65 1 85+ 89.5 7583

end
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Using Poisson regression for incidence rates: SAS

data skini; set skin;

logpop = log(pop); ***by default log is natural log in SAS;
logage = log(ageyrs);
run;

****Using Polsson r\egr\ession************************************************;

***categorical age;

proc genmod data = skini;

class ageyrs;

model case = ageyrs town/ dist = poisson link = log offset = logpop;
estimate ’age adjusted RR of skincancer in Dallas vs MSP’ town 1;
run;

***Continuous age;

proc genmod data = skini;

model case = ageyrs town/ dist = poisson link = log offset = logpop;
estimate ’age adjusted RR of skincancer in Dallas vs MSP’ town 1;
run;

***og transformed continuous age;

proc genmod data = skini;

model case = logage town/ dist = poisson link = log offset = logpop;
estimate ’age adjusted RR of skincancer in Dallas vs MSP’ town 1;
run;

Rk IR Sk R Sk Sk Sk Sk Sk Sk Sk Sk R Ok Rk o R Sk Sk Sk Sk Sk Sk ok ok Sk Sk Sk Sk SRR Rk e Rk S Sk S Sk Sk Sk Rk kS Sk bk ok ok o
J

Using Binomial regression with log link - practically same answer;
************************************************************************;
proc genmod data = skini;

class ageyrs;

model case/pop = ageyrs town / dist = binomial link = log;

estimate ’age adjusted RR of skincancer in Dallas vs MSP’ town 1;

run;



Treating age as categorical

glm case i.age cat town, family(poisson) link(log) offset (logpop)

Generalized linear models No. of obs = 16
Optimization : ML Residual df = 7
Scale parameter = 1
Deviance = 8.258494053 (1/df) Deviance = 1.179785
Pearson = 8.127296469 (1/df) Pearson = 1.161042
Variance function: V(u) = u [Poisson]
Link function : g(u) = In(u) [Log]
AIC = 7.531475
Log likelihood = -51.25179981 BIC = -11.14963
| OIM
case | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ o
age cat |
2 2.630202 4674615 5.63 0.000 1.713994 3.54641
3 3.847367 .4546594 8.46 0.000 2.956251 4.738483
4 | 4.595197 .4510287 10.19 0.000 3.711197 5.479197
5 | 5.087289 .4503011 11.30 0.000 4.204715 5.969863
6 | 5.645412 .4497475 12.55 0.000 4.763924 6.526901
7 6.058534 .4503204 13.45 0.000 5.175923 6.941146
8 | 6.17419 .4577405 13.49 0.000 5.277035 7.071345
|
town | .8038983 .0522048 15.40 0.000 .7015788 .9062177
cons | -11.65761 .4487091 -25.98 0.000 -12.53706 -10.77816
|

1 (offset)



Treating age as categorical: Risk (Rate) Ratio

glm,

eform

Generalized linear models

Optimization

Deviance

Pearson

Variance function:

Link function

Log likelihood

ML

V((u) =
g(u) =

8.258494053
8.127296469

1n (u)

= -51.25179981

No. of obs
Residual df

Scale parameter

(1/df)
(1/df)

Deviance

Pearson

[Poisson]

[Log]
AIC
BIC

16

7

1
1.179785
1.161042
7.531475
-11.14963

13.87657
46.86951
99.00766
161.9502
282.9902
427.7481
480.1938

2.234234
8.65e-06
1

6.486763
21.30966

44.6553
72.92636
127.2742
192.6237
219.8042

.1166376
3.88e-06
(offset)

15.
-25.

.63
.46
10.
11.
12.
13.
13.

19
30
55
45
49

40
98

O O O O o o o

(@)

.000
.000
.000
.000
.000
.000
.000

.000

0.000

[95% Conf.

5.55109
19.22577
40.90274
67.00151
117.2049
176.9598
195.7885

2.016935
3.5%9e-06

Interval]

34.68855
114.2608
239.6543

391.452
683.2777
1033.955
1177.731

2.474944
.0000208



Treating age as continuous

link (loqg)

16

13

1
14.65856
11.39972

18.1754
154.5176

glm case ageyrs town, family (poisson)
Generalized linear models
Optimization : ML
Deviance = 190.561268
Pearson = 148.1964085
Variance function: V(u) = u
Link function : g(u) = In(u)
Log likelihood = -142.4031868
OIM
case Coef Std. Err. z
ageyrs | .0600283 .0013123 45.74
town | .8192832 .0521801 15.70
_cons | -10.31721 .0955464 -107.98
logpop | 1 (offset)

Interval]

.0626003
.9215543
-10.12994

lincom town, rrr

(1) [case]ltown = 0
case | RRR
(1) | 2.268873

offset (logpop)
No. of obs =
Residual df =
Scale parameter =
(1/df) Deviance =
(1/df) Pearson =
[Poisson]
[Log]
AIC =
BIC =
P>|z| [95% Conf.
0.000 .0574562
0.000 .7170121
0.000 -10.50448
P>|z| [95% Conf.
0.000 2.048304

Interval]

==Kk %k

<—=%k %%



Treating log(age) as continuous

link (loqg)

16

13

1
3.092361
2.643474

8.777863
4.157042

glm case logage town, family (poisson)
Generalized linear models
Optimization : ML
Deviance = 40.20069588
Pearson = 34.36515837
Variance function: V(u) = u
Link function : g(u) = In(u)
Log likelihood = -67.22290072
OIM
case Coef Std. Err. z
logage | 3.313291 .0820583 40.38
town | .8095186 .0521754 15.52
_cons | -20.10271 .3423286 -58.72
logpop | 1 (offset)

3.474122
.9117806
-19.43176

lincom town, rrr

(1) [case]ltown = 0
case | RRR
(1) | 2.246826

offset (logpop)
No. of obs
Residual df
Scale parameter
(1/df) Deviance
(1/df) Pearson
[Poisson]
[Log]
AIC
BIC
P>|z| [95% Conf
0.000 3.15246
0.000 .7072567
0.000 -20.77367
P>|z| [95% Conf
0.000 2.028419

==Kk %k

K—=*k %%



Binomial regression

binreg case i.age cat town,

Generalized linear models

Optimiza

Deviance

Pearson

Variance function:

Link function

tion

MQL Fisher scoring

(IRLS EIM)

V(u) =
g(u) =

8.281933795
8.150373408

u* (1-u/pop)
1n (u/pop)

rr n(pop)

No. of obs
Residual df

Scale parameter

(1/df)
(1/df)

Deviance

Pearson

[Binomial]

[Log]
BIC

16

7

1
1.183133
1.164339
-11.12619

13.87658
46.87123
99.01094
161.95
282.9974
427.6687
480.063

2.233754
8.65e-06

6.485948
21.30752
44.65057
72.91578
127.2581

192.555
219.6807

.1164364
3.88e-06

.63
.46
10.
11.
12.
13.
13.

19
30
55
46
49

O O O O o o o

o O

.000
.000
.000
.000
.000
.000
.000

[95% Conf.

5.551734
19.22882
40.90913

67.0099
117.2235
176.9537
195.7859

2.016814
3.59%e-06

Interval]

34.68456

114.251
239.6327
391.4018
683.2037
1033.607
1177.104

2.47403
.0000209

*, Similar results as Poisson regression



Comparing models

 Fitzmaurice,G.M (1997). Model selection with overdispersed data, The
Statistician, 46(1):81-91. recommends using Adjusted Information criterion
to choose model in cases with overdispersion.

» The general form of information criterion is = -2logL + penalty factor
AIC =-2logL + 2*p

SC = Schwarz’s Criterion = BIC = - 2logL + 2*p*log(n)

AICC (Corrected AIC) = -2logL + 2*p*(n/n-p)

» Recall that if ; is small (less than 5) then the Deviance and Pearson are not
good measures of the goodness-of-fit and using them as a measure of
overdispersion is not recommended.

 This is the same rule of thumb that tells us not to use the chi-square test when
expected cell sizes in a table are < 5.

Note: In Stata, the AIC and BIC in -gIlm- output use different formula from -
estat ic- command. The latter is closer to the SAS output (if not the same).



Ship damage example

* From McCullagh and Nelder (1989), Sec 6.3.2.

« Each row represents the AGGREGATED number of months of service and
number of damage incidents to all ships in the fleet; particular type built in
the particular year (60-64, 65-69, 70-74, 75-79) and operating during the
particular time period (60-74, 75-79).

 Notice there are some structural zeros (0) under service because it was not
possible for a ship built between 75-79 to operate between 1960-1974.

index shiptype year period months damage
1 A 60 60 127 0
2 A 60 75 63 0
3 A 65 60 1095 3
4 A 65 75 1095 4
5 A 70 60 1512 6
6 A 70 75 3353 18
7 A 75 60 0 0
8 A 75 75 2244 11
9 B 60 60 44882 39
10 B 60 75 17176 29



Ship damage example: Stata output

glm damage i.type i.year i.period,

Generalized linear models

Optimization

Deviance

Pearson

Variance function:

Link function

Log likelihood

ML

38.69504856

= 42.2752462
V(u) = u
g(u) = 1n(u)

family (poisson)

No.

link (log)
of obs

Residual df

Scale parameter

(1/df)
(1/df)

Deviance

Pearson

[Poisson]

[Log]
AIC
BIC

offset (logmonths)

34

25

1
1.547802
1.69101

4.545928
-49.46396

year
65
70
75

75.period
_cons

logmonths

-.5433442
-.6874015
-.0759614

.3255796

.6971404
.8184267
.4534269

.3844667
-6.405901
1

.1775899
.3290472
.2905787
.2358794

.1496414
1697737
.2331705

.1182722
.2174441
(offset)

.06
.09
.26
.38

4.66
4.82
1.94

.25
.46

o O o o

.002
.037
.794
.168

0.000
0.000
0.052

0.001
0.000

[95% Conf.

-.8914141
-1.332322
-.6454851
-.1367355

.4038486
.4856764
-.0035789

.1526575
-6.832084

Interval]

-.1952744
-.0424808
.4935623
.7878948

.9904321
1.151177
.9104327

.6162759
-5.979719



Ship damage example: Stata output

// relative rate for B vs. C type
. lincom 2.type-3.type, eform

(1) [damage]2.type - [damage]3.type = 0
damage | exp (b) Std. Err z P>|z| [95% Conf. Interval]
_____________ _|_________________________________________________________________
(1) | 1.15495 .3449144 0.48 0.630 .6432213 2.073796

// relative rate for 1975- vs. 1960-64

. lincom 75.year, eform

(1) [damage] 75.year = 0
damage | exp (b) Std. Err. z P>|z| [95% Conf. Interval]
_____________ _|_________________________________________________________________
(1) | 1.573696 .3669394 1.94 0.052 .9964275 2.485398

Note: The Pearson X2 was 1.69 and Deviance 1.55 indicating moderate
overdispersion. In SAS, this can be addressed in Proc Genmod by using the
scale option in the model statement: scale = p uses the Pearson, while scale = d
uses the deviance to adjust the standard error estimates. In Stata, use scale(x2)
or scale(dev) option.



Ship damage example: correct for overdispersion

glm damage

i.type i.year i.period,

family (poisson)

link(

log) offset (logmonths)

year
65
70
75

75.period
_cons

logmonths

-.5433442
-.6874015
-.0759614

.3255796

.6971404
.8184267
.4534269

.3844667
-6.405901
1

.2309359
.4278892
.3778651
.3067348

.1945919
.2207717
.3032122

.1537997
.2827618

(offset)

.35
.61
.20
.06

3.58

.71
.50

.50
.65

o O O O

.019
.108
.841
.288

0.000
0.000
0.135

0.012
0.000

.9959702
1.526049
.8165634
.2756096

.3157472
.3857221
.1408581

.0830247
6.960104

-.0907183
.1512459
.6646406
.9267688

1.078534
1.251131
1.047712

.6859086
-5.851699

(Standard errors scaled using square root of Pearson X2-based dispersion.)

scale (x2)



Ship damage example: Stata output

// relative rate for B vs. C type
. lincom 2.type-3.type, eform

(1) [damage]2.type - [damage]3.type = 0
damage | exp (b) Std. Err z P>|z| [95% Conf. Interval]
_____________ _|_________________________________________________________________
(1) | 1.15495 .4485226 0.37 0.711 .5395116 2.47244

// relative rate for 1975- vs. 1960-64

. lincom 75.year, eform

(1) [damage] 75.year = 0
damage | exp (b) Std. Err. z P>|z| [95% Conf. Interval]
_____________ _|_________________________________________________________________
(1) | 1.573696 .4771638 1.50 0.135 .8686126 2.85112

Note: the coefficient estimates are the same as previous output, but the standard
errors and test p-values are now more conservative.



Poisson regression with common risks

Previously we saw that OR and RR were quite different when the prevalence of
the risk was not small, bigger than 10%. In order to estimate an adjusted RR we
could use the Binomial model with a log link. But sometimes there are
computational difficulties with this model. An alternative is to use the Poisson
model AND to utilize the ROBUST STANDARD ERRORS. Regular standard
errors for Poisson are known to be too conservative in these cases of
approximating binomial data with common risk.

**********************Binomial Regr\ession;
proc genmod data = birthwgt2 descending;
class c_baseline bmi (ref = "2") /param = ref;
model hibwt = totalweightgain c_baseline bmi/dist=binomial link=log type3;
run;
**********************Poisson Regr\eSSlon;
proc genmod data = birthwgt2 descending;

class c_baseline bmi (ref = "2") id /param = ref; <- need to generate an ‘id’ variable for
every sample;

model hibwt = totalweightgain c_baseline bmi/dist=poisson link=log type3;
repeated sub = id / type=ind; <- This is the statement to obtain robust std errors;
run;



Birthweight example: log link

glm hibwt totalweightgain ib2.c baseline bmi, fam(bin) link(log) eform iter (100)
Iteration 100: log likelihood = -1039.0036 (not concave)

convergence not achieved

AIC = 1.042004
Log likelihood = -1039.003635 BIC = -13100.99
| OIM
hibwt | Risk Ratio Std. Err. z P>|z| [95% Conf. Interval]
________________ o __
totalweightgain | 1.024364 8.78e-10 2.8e+07 0.000 1.024364 1.024364
|
c baseline bmi |
1 | .0617007 .0352668 -4.87 0.000 .0201262 .1891555
3 .6152626 .0750599 -3.98 0.000 .4844141 .7814554
4 | 1.855169
|
cons | .1368256 7.65e-09 -3.6e+07 0.000 .1368255 .1368256

Warning: parameter estimates produce inadmissible mean estimates in one or
more observations.

Warning: convergence not achieved



Birthweight example: Poisson regression with regular S.E.

glm hibwt totalweightgain ib2.c baseline bmi,

Generalized linear models

Optimization

Deviance

Pearson

Variance function: V(u)

Link function

Log likelihood

ML

963.011489
1643.646513

u
1n (u)

g (u)

= -741.5057445

fam (poisson)

No. of obs

link(log) eform

Residual df =
Scale parameter =
(1/df) Deviance =
(1/df) Pearson =

[Poisson]
[Log]

ATIC

BIC

2000
1995

1
4827125
.823883

. 7465057
-14200.79

totalweightgain

Cc baseline bmi
1

OIM

Std. Err.

[95% Conf. Interval]

1.032877

.187722
1.875006
2.387442

.0334007

.0046171

.1100813
.3199926
.3428306

.0064157

.85
.68

6.06

0.004
0.000
0.000

1.023868

.0594793
1.341945
1.801783

.022922

1.041966

.5924677
2.619814
3.163466

.0486695



Birthweight example: Poisson regression with robust S.E.

glm hibwt totalweightgain ib2.c baseline bmi, fam(poisson) link(log) eform robust

Generalized linear models No. of obs = 2000
Optimization : ML Residual df = 1995
Scale parameter = 1
Deviance = 963.011489 (1/df) Deviance = .4827125
Pearson = 1643.0646513 (1/df) Pearson = .823883
Variance function: V(u) = u [Poisson]
Link function : g(u) = 1In(u) [Log]
ATIC = .7465057
Log pseudolikelihood = -741.5057445 BIC = -14200.79
| Robust
hibwt | IRR Std. Err. z P>|z| [95% Conf. Interval]
________________ o __
totalweightgain 1.032877 .0038243 8.74 0.000 1.025409 1.0404

Cc baseline bmi

|
|
|
I
3 1.875006 .2884014 4.09 0.000 1.386999 2.534714
I
|
I

1 187722 .1077046 -2.92 0.004 .0609737 .5779468
4 2.387442 .3093241 6.72 0.000 1.852032 3.077634
cons .0334007 .005491 -20.68 0.000 .0242002 .0460989



Other count models

o Zero-truncated Poisson

Example: A study by the county traffic court on the number of tickets
received by teenagers as predicted by school performance, amount of driver
training and gender. Only individuals who have received at least one
citation are in the traffic court files.

SAS: proc nlmixed ...;
(http://www.ats.ucla.edu/stat/sas/fag/zt_nlmixed.htm)

Stata: tpoisson v x1 x2, inflate (x1)
(http://lwww.ats.ucla.edu/stat/sas/fag/zt_nlmixed.htm)



Other count models

Zero-inflated Poisson

Example: The state wildlife biologists want to model how many fish are
being caught by fishermen at a state park. Visitors are asked whether or not
they have a camper, how many people were in the group, were there
children in the group and how many fish were caught. Some visitors do not
fish, but there is no data on whether a person fished or not. Some visitors
who did fish did not catch any fish so there are excess zeros in the data
because of the people that did not fish.

SAS: proc genmod data = T; model y = x1 x2 / dist=zip;
zeromodel x1 / link = logit;

(http://www.ats.ucla.edu/stat/sas/dae/zipreg.htm)

Stata: zip v x1 x2, inflate (x1)
(http://www.ats.ucla.edu/stat/stata/dae/zip.htm)



Other count models

* Negative binomial model:

— Have one more parameter than the Poisson, the second parameter can be
used to adjust the variance independently of the mean.

— Alternative solution to overdispersed Poisson

SAS: proc genmod data = T; model y = x1 x2 / dist=negbin;

Stata: glm v x1 x2, family (nb)

« Zero-inflated negative binomial model
« Zero-truncated negative binomial model
(*. Check the UCLA website for examples)



Estimation and Goodness of fit for GLM

« Estimation:
— MLE: maximize the log-likelihood

— Iterated Weighted Least Squares (IWLS): analogous to weighted least
squares, with the weights updated iteratively

GLM fits using IWLS is more general than MLE (see e.g. quasi-likelihood
If you want to know more details)

« (Goodness of fit:
— Pearson’s X?: (does not depend on distribution assumption)

Xz :Zn: (Yi _,&i)2
=V () m
where m; = 1 for Normal and Poisson, n; for Binomial.
— Deviance: (does not depend on ¢, but depends on log-likelihood)

D(Y.2)=2p{1(Y.4Y) -1 (2.4:Y)!

zziznl“mi {Yi(éi —Q)—[b(él)_b(e'ﬂ}

where b’(é):Yi (natural parameter for the saturated model)



Residuals

» Types of Residuals:
— Pearson residual: ~ ,p _ Yi— /44

— Deviance residual:

— Response residual:  r _y _

~ Working residual:  pw v, _ﬂ_)aﬁi
| | | aﬂl
_ partial recidual- N
Partial residual: = (Y, - i) 72. x, A

Note: residual diagnostics non-informative for binary data

» Overdispersion: Var(Y) > a(¢)V(«) for any GLM
check if X?/(n-p) or D/(n-p) >>1



Checking outliers
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Check for observations with large (standardized) Pearson or deviance
residuals.

Deviance residual is generally preferred to the Pearson residual, since its
distributional properties are closer to the residuals in linear regression.




Checking the variance function
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The x-axis is “constant-information scale” for Poisson errors. See McCullagh
and Nelder, “Generalized Linear Models” (Chapter 12.6.1).

Positive trend indicates the current variance function increases too slowly with
the mean.



Checking for linearity: lowess plot
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Other approach to check departure from linearity:

— Add polynomial terms (e.g., age”2) and test for their statistical
significance;

— Group continuous predictor into categories (e.g., age_cat).



Other Diagnostics

» Checking the link function: the simplest method is to include n° as
covariate and assessing the fall in deviance. (Hinkley, 1985)

 Partial residual is helpful to assess the form of covariates, i.e., plot partial
residual against the corresponding predictor.

* Checking influential points: modified Cook’s distance (> 4/(n-p) to be
problematic)
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