
Categorical outcome variables (Beyond 0/1 data) (Chapter 6) 

 

• Ordinal logistic regression (Cumulative logit modeling) 

• Proportion odds assumption 

• Multinomial logistic regression 

• Independence of irrelevant alternatives, Discrete choice models 

 

 

Although there are some differences in terms of interpretation of parameter 

estimates, the essential ideas are similar to binomial logistic regression. 



Ordered categorical outcomes 
Examples: tumor stage (local, regional, distant), disability severity (none, mild, 
moderate severe), Likert items (strong disagree, disagree, agree, strongly 
agree), weight status (underweight, normal, overweight, obese) 

• Dichotomize at some fixed level corresponding to a logical outcome of 
interest, e.g. maybe it is particularly of interest to distinguish between 
tumors detected at the regional stage and those at the distant stage, hence 
we could dichotomize the stages at that point. 

• Could treat the ordered categories as a continuous variable. If it is 
reasonable to assume that a unit difference between one level and the next 
is constant, then this can be a reasonable approach. Often Likert items are 
simply treated as if they are continuous scores with unit increments 1,2,3,4. 

• Both above methods are suboptimal since they either throw out 
information (dichotomizing) or make uncheckable assumptions (treating as 
continuous) 

• A popular way to model the ordered categories directly is using an ordered 
logistic regression, also called ordinal or cumulative logistic regression 
and also called a “proportional odds model” which aptly states the model’s 
main assumption 



Ordered logistic regression 
Let Yi take on categories 1, 2, . . ., K, the ordered logistic regression model is 

𝑌𝑖 ~ Multinomial (𝜋1, 𝜋2, … , 𝜋𝐾 ) 

𝑙𝑜𝑔
𝜋𝑗+1 + … + 𝜋𝐾

𝜋1 + … + 𝜋𝑗
= 𝑙𝑜𝑔

𝑃𝑟 𝑌𝑖 > 𝑗

𝑃𝑟 𝑌𝑖 ≤ 𝑗
= 𝛽0𝑗 + 𝛽𝐗,  𝑗 = 1, … , 𝐾 − 1  

and 𝛽01 ≥ 𝛽02 ≥ … ≥ 𝛽0𝐾 

Note that P(Y ≤ j) = π1 + π2 + . . . + πj . Hence we are modeling the log odds of 
being greater than the cutoff value j as compared to being less than it and a 
similar expression applies for j at all K − 1 levels. For example, if K = 4 then we 
are modeling the odds of: 2,3,4 vs. 1; and 3,4 vs. 1,2; and 4 vs. 1,2,3. 

 

Note that the intercept parameter β0j is different for each j allowing the jump in 
probability from one level to the next to differ, but that the β relating the 
predictor X to the logit of the outcome is constant across all j. 

 

This constant β - interpreted as the “log odds ratio of being at a higher level 
compared to a lower level associated with a unit increase in X” - is a strong 
assumption and is referred to as the “proportional odds” assumption and can be 
tested. 



Assessing the proportional odds assumption 
The ordered logistic regression model basically assumes that the way X is related to 

being at a  higher level compared to lower level of the outcome is the same across all 

levels of the outcome. 

The global test for proportional odds considers a model 

𝑙𝑜𝑔
𝑃𝑟 𝑌𝑖 > 𝑗

𝑃𝑟 𝑌𝑖 ≤ 𝑗
= 𝛽0𝑗 + 𝛽𝑗𝐗,  𝑗 = 1, … , 𝐾 − 1 

and tests whether β1 = β2 = . . . = βK−1 for all p elements of β hence it is a test with 

p∗(K − 2) degrees of freedom. This test is known to be problematic since it is “anti-

conservative” (rejects more than it should) plus as a global test it does not tell us 

where the problem of non-proportionality is or how practically important it is.  

 

Bender R and Grouven U (1998) Using Binary Logistic Regression Models for 

Ordinal Data with Non-proportional Odds, J Clin Epidemiology, 51(10) 809-816. 

• recommends fitting separate tests for each covariate (from unadjusted models) 

• recommends comparing slopes from separately fit logistic regression models 

• discusses PPOM - partially proportional odds model and generalized logit 

models 



Proportional odds modeling in SAS, STATA, and R 
• In SAS: PROC LOGISTIC works, by default if there are more than 2 

categories it will perform ordinal logistic regression with the proportional 
odds assumption. By default SAS will perform a “Score Test for the 
Proportional Odds Assumption”. Can also use Proc GENMOD with 
dist=multinomial link=cumlogit 

• In STATA: Estimate the Ordinal Logistic Regression model using ologit and 
then to check proportional odds use the post-estimation command  

. brant, detail  

Download the add-on file  

. net from http://www.indiana.edu/∼jslsoc/stata/  

The available packages will be listed with the package names shown in blue. 
Click on the blue name of the package you want to install (e.g. spost9ado) 
and follow the instructions. 

• In R: can use the lrm() function in the Design (now rms) Package; can also 
be fit using polr() in the MASS Package; and the vglm() function in the 
VGAM Package; and others… 

Example: http://www.ats.ucla.edu/stat/r/dae/ologit.htm 



Birthweight example: Stata 

Mother’s baseline bmi category is regressed on age and parity. 
 

 

. xi: ologit c_baseline_bmi i.parityftpt3cat age_lmp 

i.parityftpt3~t   _Iparityftp_0-2     (naturally coded; _Iparityftp_0 omitted) 

Ordered logistic regression                       Number of obs   =       2000 

                                                  LR chi2(3)      =      55.14 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -2385.3117                       Pseudo R2       =     0.0114 

-------------------------------------------------------------------------------- 

c_baseline_bmi |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

 _Iparityftp_1 |   .1536237   .0992048     1.55   0.121    -.0408142    .3480616 

 _Iparityftp_2 |    .663759   .1073115     6.19   0.000     .4534323    .8740857 

       age_lmp |   .0227954   .0080193     2.84   0.004     .0070779    .0385129 

---------------+---------------------------------------------------------------- 

         /cut1 |  -1.632739   .2307082                     -2.084919   -1.180559 

         /cut2 |   1.050924   .2248569                      .6102129    1.491636 

         /cut3 |   1.742057   .2265837                      1.297961    2.186153 

-------------------------------------------------------------------------------- 

 

. ologit, or <-- to show odds ratios 

... 

 



Birthweight example: Stata (test for proportional odds) 
 

. brant, detail 

Estimated coefficients from j-1 binary regressions 

                      y>1         y>2         y>3 

_Iparityftp_1  -.07919096   .15520257   .28841532 

_Iparityftp_2     .245485   .70531414   .75288058 

      age_lmp   .07588288   .01187854   .01914656 

        _cons   .37355111  -.76029493  -1.7073335 

 

Brant Test of Parallel Regression Assumption 

 

    Variable |      chi2   p>chi2    df 

-------------+-------------------------- 

         All |     19.83    0.003     6 

-------------+-------------------------- 

_Iparityft~1 |      4.21    0.122     2 

_Iparityft~2 |      4.45    0.108     2 

     age_lmp |     15.05    0.001     2 

---------------------------------------- 

A significant test statistic provides evidence that the parallel 

regression assumption has been violated. 

 

Note: -brant- is not fully compatible with newer version of Stata.  Have to use -

xi- prefix for categorical variables. 



Birthweight example: SAS (1) 
 

Data Set                      WORK.BIRTHWGT 

Response Variable             c_baseline_bmi 

Number of Response Levels     4 

Model                         cumulative logit 

Optimization Technique        Fisher's scoring 

 

Number of Observations Read        2000 

Number of Observations Used        2000 

 

            Response Profile 

 

 Ordered     c_baseline_          Total 

   Value     bmi              Frequency 

 

       1     4                      582 

       2     3                      311 

       3     2                      945 

       4     1                      162 

 

Probabilities modeled are cumulated over the lower Ordered Values. 



Birthweight example: SAS (2) 
Model Convergence Status 

         Convergence criterion (GCONV=1E-8) satisfied. 

 

Score Test for the Proportional Odds Assumption 

Chi-Square       DF     Pr > ChiSq 

   20.7129        6         0.0021 

 

Model Fit Statistics 

                             Intercept 

              Intercept            and 

Criterion          Only     Covariates 

AIC            4831.766       4782.623 

SC             4848.569       4816.229 

-2 Log L       4825.766       4770.623 

 

        Testing Global Null Hypothesis: BETA=0 

Test                 Chi-Square       DF     Pr > ChiSq 

Likelihood Ratio        55.1429        3         <.0001 

Score                   54.7351        3         <.0001 

Wald                    54.5996        3         <.0001 

 

            Type 3 Analysis of Effects 

                                Wald 

Effect              DF    Chi-Square    Pr > ChiSq 

parityftpt3cat       2       39.0735        <.0001 

age_lmp              1        8.0750        0.0045 



Birthweight example: SAS (3) 
Analysis of Maximum Likelihood Estimates 

                                      Standard          Wald 

Parameter           DF    Estimate       Error    Chi-Square    Pr > ChiSq 

Intercept      4     1     -1.7421      0.2270       58.8952        <.0001 

Intercept      3     1     -1.0509      0.2248       21.8458        <.0001 

Intercept      2     1      1.6327      0.2306       50.1474        <.0001 

parityftpt3cat 1     1      0.1536      0.0988        2.4153        0.1202 

parityftpt3cat 2     1      0.6638      0.1072       38.3319        <.0001 

age_lmp              1      0.0228     0.00802        8.0750        0.0045 

 

                  Odds Ratio Estimates 

                            Point          95% Wald 

Effect                   Estimate      Confidence Limits 

parityftpt3cat 1 vs 0       1.166       0.961       1.415 

parityftpt3cat 2 vs 0       1.942       1.574       2.396 

age_lmp                     1.023       1.007       1.039 

 

 

Note: the estimated intercepts in SAS has opposite sign as in Stata.  See next 

slide for details. 
 



Backtransforming to probabilities 

In SAS -- logit(Pr(Y_i >= j)) = alpha_j + beta*X 

In Stata -- logit(Pr(Y_i <= j)) = alpha_j - beta*X 

 

EXAMPLE: For parity3cat = 0 and age_lmp = 25, we have: 

IN SAS: 

-1.7421 + 25*.0228 = -1.1721 --> invlogit(-1.1721) = Prob(4) = .236 

-1.0509 + 25*.0228 = 0.04809 --> invlogit(.04809) = Prob(3 or 4) = .512 

1.637 + 25*.0228 = 2.207 --> invlogit(2.207) = Prob(2,3, or 4) = .901 

In Stata: 

1.7421 - 25*.0228 = 1.1721 --> invlogit(1.1721) = Prob(1,2 or 3) = 1-.236=.763 

1.0509 - 25*.0228 = -0.04809 --> invlogit(-.04809) = Prob(1 or 2) = 1-.512=.488 

-1.637 - 25*.0228 = -2.207 --> invlogit(-2.207) = Prob(1) = 1-.901 = .099 

 

So for a woman who has not had any previous kids (parity3cat = 0) and is 25 

years old when she gets pregnant, her predicted probability of being obese at 

the time she gets pregnant is 0.236. What is her probability of being of Normal 

weight (2)? 



Outcome: nominal categories 

Examples: consumer brand choice (Geico, State Farm, Acuity, Progressive), 

homeless sleeping situation (on street, with friend/family, hotel, shelter), 

parenting style (authorative, authoritarian, permissive, neglectful) 

• Could run separate logistic regression models, one comparing each pair of 

outcomes. In fact this is quite similar to what the multinomial logistic 

regression model does, but it is slightly less efficient and can only produce 

dichotomous predicted probabilities (rather than probability of being in any 

of the K categories), also does not allow for an overall test of covariate 

related to differences across any category. Advantage of separate logistic 

regressions is ease of interpretation. 

• Could collapse categories so there were only two and then do a logistic 

regression, but this would lose information that may be of interest across 

categories 

• Multinomial logistic or “generalized logit” models are a way to fit a 

nominal category outcome in a regression framework. 

• Can also use when the POM assumption does not apply to an ordinal 

outcome 



Multinomial logistic model - Nominal categories 
Let Yi take on categories 1, 2, . . ., K, the general multinomial model is 

𝑌𝑖 ~ Multinomial (𝜋1, 𝜋2, … , 𝜋𝐾 ) 

𝑙𝑜𝑔
𝜋𝑗

𝜋𝐾
= 𝑙𝑜𝑔

𝑃𝑟 𝑌𝑖 = 𝑗

𝑃𝑟 𝑌𝑖 = 𝐾
= 𝛽0𝑗𝐾 + 𝛽𝑗𝐾𝐗,  𝑗 = 1, … , 𝐾 − 1  

where K is fixed as the reference group. Hence we are modeling the log relative 
risk ratio of being at any particular level j as compared to being in the reference 
class K and this relationship is allowed to be different across the covariates. For 
example, if K = 4 then we are modeling the risk ratio of: 1 vs. 4; and 2 vs. 4; and 
3 vs. 4 

Any of the categories can be chosen to be the baseline. The model will fit 
equally well, achieving the same likelihood and producing the same fitted 
values. Only the values and interpretation of the coefficients will change. 

Note: we are modeling the ratio of two probabilities but they are probabilities of 
different categories within the same outcome so it is more common to interpret 
the exponentiated coefficients as odds ratios rather than relative risks (SAS calls 
them odds ratios, Stata calls them relative risk ratios) 

Note: if there are only 2 categories, this is identical to usual logistic regression – 
Odds ratios 



Multinomial logistic model in SAS, STATA, and R 

 

• In SAS: use PROC LOGISTIC and add the /link=glogit option on the model 

statement. Can fix the reference class of the outcome variable (i.e. what is K) 

by adding (ref = ’name’) after the outcome in the model statement. 

 

• In Stata: use -mlogit- command. Can fix the reference by using the 

baseoutcome () option. Can get exponentiated coefficients by using the rrr 

option. 

 

• In R: use multinom() in the nnet library of the MASS package, or vglm() in 

the VGAM package. 

Example: http://www.ats.ucla.edu/stat/r/dae/mlogit.htm 



Independence of irrelevant alternatives 

In multinomial logistic regression, it is assumed that adding or removing 

categories does not affect the odds associated with the remaining categories. 

This is called Independence of irrelevant alternatives (IIA). 
 

Humorous example of violation of the IIA assumption from a Groucho Marx 

sketch: 

Marx was dining in a posh restaurant when the waiter informed him that the 

specials for the evening were steak, fish and chicken. Groucho ordered the 

steak. The waiter returned later and apologized that there was no fish that 

evening. Groucho replied, “In that case, I’ll have the chicken”. (example 

taken from Hardin and Hilbe Generalized Linear Models and Extensions 

(2007)) 
 

There are statistical tests to check for IIA assumption, but they all perform 

poorly. The general advice is to use multinomial logistic model when you can 

clearly distinguish between the outcome categories in your dataset. 
 

When the IIA assumption is violated, alternative-specific multinomial probit 

regression is recommended which allows for dependence across the categories. 



Birthweight example: Stata 
. xi: mlogit c_baseline_bmi i.parityftpt3cat age_lmp, b(1) 

Multinomial logistic regression                   Number of obs   =       2000 

                                                  LR chi2(9)      =      75.78 

                                                  Prob > chi2     =     0.0000 

Log likelihood = -2374.9925                       Pseudo R2       =     0.0157 

------------------------------------------------------------------------------- 

c_baseline_~i |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

--------------+---------------------------------------------------------------- 

1             |  (base outcome) 

--------------+---------------------------------------------------------------- 

2             | 

_Iparityftp_1 |  -.1576209   .1945768    -0.81   0.418    -.5389843    .2237426 

_Iparityftp_2 |  -.1266099   .2412844    -0.52   0.600    -.5995187    .3462989 

      age_lmp |   .0752137    .017245     4.36   0.000     .0414142    .1090132 

        _cons |  -.1697861   .4492883    -0.38   0.706    -1.050375    .7108028 

--------------+---------------------------------------------------------------- 

3             | 

_Iparityftp_1 |  -.1925297   .2261308    -0.85   0.395     -.635738    .2506786 

_Iparityftp_2 |   .3138903   .2644296     1.19   0.235    -.2043822    .8321628 

      age_lmp |   .0638664   .0194528     3.28   0.001     .0257395    .1019932 

        _cons |  -1.056037     .51302    -2.06   0.040    -2.061538   -.0505368 

--------------+---------------------------------------------------------------- 

4             | 

_Iparityftp_1 |   .1408399   .2068236     0.68   0.496     -.264527    .5462067 

_Iparityftp_2 |    .745237   .2457513     3.03   0.002     .2635733    1.226901 

      age_lmp |   .0838164   .0180537     4.64   0.000     .0484318     .119201 

        _cons |  -1.207026    .475945    -2.54   0.011    -2.139861   -.2741913 

------------------------------------------------------------------------------- 



Birthweight example: SAS (1) 
proc logistic data = birthwgt descending; 

 class parityftpt3cat (ref = "0") /param = ref; 

 model c_baseline_bmi = parityftpt3cat age_lmp/link=glogit; 

run; 

 

Model Fit Statistics 

                             Intercept 

              Intercept            and 

Criterion          Only     Covariates 

AIC            4831.766       4773.985 

SC             4848.569       4841.196 

-2 Log L       4825.766       4749.985 

 

        Testing Global Null Hypothesis: BETA=0 

Test                 Chi-Square       DF     Pr > ChiSq 

Likelihood Ratio        75.7813        9         <.0001 

Score                   75.4875        9         <.0001 

Wald                    73.7188        9         <.0001 

 

            Type 3 Analysis of Effects 

                                Wald 

Effect              DF    Chi-Square    Pr > ChiSq 

parityftpt3cat       6       45.3792        <.0001 

age_lmp              3       22.7799        <.0001 



Birthweight example: SAS (2) 
Analysis of Maximum Likelihood Estimates 

                    c_baseline_                      Standard          Wald 

Parameter           bmi            DF    Estimate       Error    Chi-Square    Pr > ChiSq 

Intercept           4               1     -1.2070      0.4759        6.4316        0.0112 

Intercept           3               1     -1.0560      0.5130        4.2373        0.0395 

Intercept           2               1     -0.1698      0.4493        0.1428        0.7055 

parityftpt3cat 1    4               1      0.1408      0.2068        0.4637        0.4959 

parityftpt3cat 1    3               1     -0.1925      0.2261        0.7249        0.3945 

parityftpt3cat 1    2               1     -0.1576      0.1946        0.6562        0.4179 

parityftpt3cat 2    4               1      0.7452      0.2458        9.1960        0.0024 

parityftpt3cat 2    3               1      0.3139      0.2644        1.4091        0.2352 

parityftpt3cat 2    2               1     -0.1266      0.2413        0.2753        0.5998 

age_lmp             4               1      0.0838      0.0181       21.5537        <.0001 

age_lmp             3               1      0.0639      0.0195       10.7789        0.0010 

age_lmp             2               1      0.0752      0.0172       19.0224        <.0001 

 

Odds Ratio Estimates 

                         c_baseline_       Point          95% Wald 

Effect                   bmi            Estimate      Confidence Limits 

parityftpt3cat 1 vs 0    4                 1.151       0.768       1.727 

parityftpt3cat 1 vs 0    3                 0.825       0.530       1.285 

parityftpt3cat 1 vs 0    2                 0.854       0.583       1.251 

parityftpt3cat 2 vs 0    4                 2.107       1.302       3.411 

parityftpt3cat 2 vs 0    3                 1.369       0.815       2.298 

parityftpt3cat 2 vs 0    2                 0.881       0.549       1.414 

age_lmp                  4                 1.087       1.050       1.127 

age_lmp                  3                 1.066       1.026       1.107 

age_lmp                  2                 1.078       1.042       1.115 



Multinomial Discrete Choice models 

Choice-specific vs. case-specific independent variables. Where the dependent is 

a choice among alternatives, choice-specific independent variables vary both 

across choices and across cases. Case-specific variables, in contrast, vary only 

across cases but are uniform within any choice category. 

 

An dining choice (nested logit) example from Stata manual: 

 



Multinomial Discrete Choice models 

Stata: 
. nlogitgen type = restaurant(fast: Freebirds | MamasPizza, family:  CafeEccell | 

            LosNortenos | WingsNmore, fancy: Christophers | MadCows) 

. nlogit chosen cost distance rating || type: income kids, base(family) || 

            restaurant:, noconst case(family_id) 

 

SAS/ETS: 
proc mdc type=nlogit; 

      model chosen = cost distance rating income kids / 

            choice=(type 1 2 3, restaurant 1 2 3 4 5 6 7); 

      id family; 

      utility u(1, 3 4 5 @ 2) = cost distance rating , 

              u(1, 1 2 @ 1) = cost distance rating , 

     u(1, 6 7 @ 3) = cost distance rating , 

              u(2, 1 2 3) = income kids; 

run; 



Review 

Generalized Linear Models 

• Binary outcome 

– Relation between odds ratios, relative risks, risk differences. How to 

estimate them using different link functions (logit, log, identity). 

– Calculating predicted probabilities from fitted models 

– Interpret and test regression coefficients or odds ratios 

– Problem of separation 

– Model fit: classification table, ROC curve, Hosmer Lemeshow test 

• count outcomes 

– Poisson regression 

– The offset term (why & when to use?) 

– Interpretation of coefficients 

– Under and over-dispersion: definition, problem, estimation 

– Residual analysis, outlier detection 

 

 



Review 

• Categorical outcome 

– Ordinal logistic regression 

• Proportional odds assumption 

• Interpretation of coefficients 

• Predicted probabilities 

– Multinomial logistic regression 

• IIA assumption 

• Interpretation of coefficients 

 

 


