
Repeated Measures Analysis 

Correlated Data Analysis, Multilevel data analysis, Clustered data, 

Hierarchical linear modeling 

 

• Examples 

• Intraclass correlation 

• Hierarchical linear models 

• Random effects, random coefficients and Linear Mixed modeling 

• Generalized linear mixed models, random effects in logistic and Poisson 

regression 

• Estimation by Maximum likelihood with random effects 

• Estimation by Generalized Estimating Equations 

• Marginal versus conditional models 



Examples of Hierarchical Data 
• Cross-over study: Pancreatic enzymes examined in patients after being given 4 

different types of pills at different times to examine which one is best at 
effecting enzymes. Repeated measures within individual patients. (from 
VGMS) 

• Group randomized trials: Families randomized into health-improvement 
intervention group or control. Measure fruit/vegetable intake of all members of 
each family (baseline and 6 months). Randomization at family level, 
measurements taken on individuals within family. Family members are 
clustered within family. 

• Longitudinal measurements: Quality of life measurements taken at baseline, 1, 
3, 6, 9, 12, 18, 24 months in a CHD trial. Researchers want to know if there are 
differences in QOL trajectories after taking Drug A versus Drug B.  

• Alcoholism treatment study relating engaging in treatment to abstinence. 
Patients were sampled from over 40 clinics across the country. Patients are 
nested within clinics. Accounting for potential clinic level effects may change 
results found for individual level relationships. 

• Math Achievement measured on children within schools. Interested in 
examining whether individual or school factors are associated with 
achievement levels. Kids are nested within schools. 



Hierarchical Data 

Two characterizing features of hierarchical data 

• Correlation among observations within units 

• Predictor variables at the different levels of the hierarchy 

Level 1 is nested in Level 2 is nested in Level 3, etc. 

 

Level 1 is finest unit of analysis 

Level 2 is next unit of aggregation 

… 

 

What are the level 1 and level 2 units (and potential covariates) for the 

different examples? 



Pancreatic Enzyme Supplements Example 

Lack of digestive enzymes in the intestine can cause bowel absorption 

problems. This will be indicated by excess fat in the feces. Pancreatic enzyme 

supplements can be given to ameliorate the problem. Does the supplement 

form make a difference? (Graham, Enzyme replacement therapy of exocrine 

pancreatic insufficiency in man. NEJM, 296: 1314-17, 1977 But note: sex 

information made up for illustration.) 

Study design involved administering 4 different forms of the supplement 

(powder, tablet, capsule, coated capsule) to 6 patients. Each patient was given 

each of the 4 different pancreatic enzyme supplements (over time) and tested. 
  

       personid   gender   none   tablet   capsule   coated   

           1        M   44.5      7.3       3.4     12.4   

           2        F     33       21      23.1     25.4   

           3        M   19.1        5      11.8       22   

           4        M    9.4      4.6       4.6      5.8   

           5        F   71.3     23.3      25.6     68.2   

           6        F   51.2       38        36     52.6  



WIDE Format versus LONG FORMAT 

 

This dataset above is in what is called WIDE format. Wide format refers to 

data where the repeated measures are across columns and there is only one row 

per person. Many softwares, including both SAS and Stata, require the data to 

be converted to LONG format for analyses. Long format is where there are 

multiple rows per person corresponding to the different repeated measures. 
  

    personid         p   gender    fat   

           1   capsule        M    3.4   

           1    coated        M   12.4   

           1      none        M   44.5   

           1    tablet        M    7.3   

           2   capsule        F   23.1   

           2    coated        F   25.4   

           2      none        F     33   

           2    tablet        F     21 

         ...  



WIDE Format versus LONG FORMAT 

 

Stata code: 
rename none fatnone 

rename tablet fattablet 

rename capsule fatcapsule 

rename coated fatcoated 

reshape long fat@, i(personid) j(p none tablet capsule coated) string 

encode p, gen(pilltype) 

 

SAS code: 
proc transpose data = fecalfat out = long; 

 by personid gender; 

 var none tablet capsule coated; 

run; 

 

data long1; 

 set long (rename = (col1 = fat _NAME_ = pilltype)); 

run; 



Pancreatic Enzyme Example-WRONG ANALYSIS 

Let Yij be the excreted fat for the jth pilltype administered to the ith patient 

Yij = μj + eij 

Yij = β0 + β1 pilltype1 + β2 pilltype2 + β3pilltype3 + eij  (pilltype 4 is the 

reference) 

 

THE WRONG ANALYSIS would then be to assume eij ∼ i.i.d.N(0, σ2). This 

is wrong because we do not expect the (ei1, ei2, ei3, ei4) to be independent 

across pilltype since they are coming from the same individual i. 

 

If we model the errors as i.i.d, the method is wrongly assuming there are 24 

independent people in this study with 6 of them assigned to each of the 
treatment groups. 



Pancreatic Enzyme Example-WRONG ANALYSIS 
proc glm data = long1; 

 class pilltype; 

 model fat = pilltype/solution; 

 estimate "all compared to none" pilltype 1 1 -3 1; 

run; 

 

Dependent Variable: fat 

                                        Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        3     2008.601667      669.533889       1.86    0.1687 

Error                       20     7193.363333      359.668167 

Corrected Total             23     9201.965000 

 

R-Square     Coeff Var      Root MSE      fat Mean 

0.218280      73.57874      18.96492      25.77500 

 

Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

pilltype                     3     2008.601667      669.533889       1.86    0.1687 

 

                                            Standard 

Parameter                   Estimate           Error    t Value    Pr > |t| 

all compared to none     -49.2333333      26.8204462      -1.84      0.0813 

 

                                            Standard 

Parameter                 Estimate             Error    t Value    Pr > |t| 

Intercept              16.53333333 B      7.74239591       2.14      0.0453 

pilltype  capsule       0.88333333 B     10.94940130       0.08      0.9365 

pilltype  coated       14.53333333 B     10.94940130       1.33      0.1994 

pilltype  none         21.55000000 B     10.94940130       1.97      0.0631 

pilltype  tablet        0.00000000 B       .                .         . 



Pancreatic Enzyme Example-WRONG ANALYSIS 

USING THE WRONG ANALYSIS: 

We get MSE = σ2 = 359.6 and 

NONSIGNIFICANT pilltype effect (p = 0.1687) 

Fitted model:  

      Y_ij = beta0 + beta1*capsule + beta2*coated + beta3*none + e_ij 



Pancreatic Enzyme Example-WRONG ANALYSIS 

However, the data are NOT independent across pill types. 

 

 

 

 

 

 

 

 

 

 

 

 

Some of the variability in fat measurement can be explained by person to 

person variability. 



Pancreatic Enzyme Example-Fixed Effects Model 

The previous wrong analysis does not take into account the potentially 

different effect of each subject (or consequently the correlation found 

between observations on the same person). We expect some people to 

have across the board higher fat excretion and some to have lower. To 

account for this, we introduce a subject effect in the model which 

simultaneously raises or lowers all measurements on that person. 

 

How do we set up the model using linear regression techniques we have 

learned? 

Yij = β0 + β1 *(person=2) + ... + β5*(person=6) + β6*capsule + β7 *coated + β8*none 

+ εij 

 

Stata:  
. regress fat ib(last).pilltype i.personid 



Pancreatic Enzyme Example-Fixed Effects Model 
SAS: 
proc glm data = long1; 

 class pilltype personid; 

 model fat = pilltype personid/solution; 

 estimate "all compared to none" pilltype 1 1 -3 1; 

run; 

 

Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

pilltype                     3     2008.601667      669.533889       6.26    0.0057 

 

                                            Standard 

Parameter                   Estimate           Error    t Value    Pr > |t| 

all compared to none     -49.2333333      14.6286629      -3.37      0.0042 

 

                                            Standard 

Parameter                 Estimate             Error    t Value    Pr > |t| 

Intercept              35.20833333 B      6.33439684       5.56      <.0001 

pilltype  capsule       0.88333333 B      5.97212661       0.15      0.8844 

pilltype  coated       14.53333333 B      5.97212661       2.43      0.0279 

pilltype  none         21.55000000 B      5.97212661       3.61      0.0026 

pilltype  tablet        0.00000000 B       .                .         . 

personid  1           -27.55000000 B      7.31433144      -3.77      0.0019 

personid  2           -18.82500000 B      7.31433144      -2.57      0.0212 

personid  3           -29.97500000 B      7.31433144      -4.10      0.0009 

personid  4           -38.35000000 B      7.31433144      -5.24      <.0001 

personid  5             2.65000000 B      7.31433144       0.36      0.7222 

personid  6             0.00000000 B       .                .         . 



Pancreatic Enzyme Example-Fixed Effects Model 

Person-specific intercepts: 

Person 1: b01 = β0  

Person 2: b02 = β0 + β1 

… 

Person 6: b06 = β0 + β5 

 

Potential problem: If we collect data from hundreds or thousands individuals, 

this fixed-effects model will include a huge number of predictors – very 

inefficient! 

 

Solution: Make a distributional assumption for μ0i’s so that we only need to 

estimate the parameters that determine the shape of the assumed distribution. 

Which distribution comes to our mind first? 



Introduce Subject Random Effects 

Suppose we are mainly interested in the relationship between fat measure and 

pilltype, and less interested in the person-specific averages. 

 

As before, let Yij be the excreted fat for the jth pilltype administered to the ith 

patient. But now we split the error term into a subject specific effect bi and a 

residual error effect 𝑒𝑖𝑗
∗ . 

𝑌𝑖𝑗 = 𝜇𝑗 + 𝑒𝑖𝑗 = 𝜇𝑗 + 𝑏𝑖 + 𝑒𝑖𝑗
∗  

We now assume 𝑏𝑖~𝑖𝑖𝑑𝑁 0, 𝜎𝑠𝑢𝑏𝑗𝑒𝑐𝑡
2  and 𝑒𝑖𝑗

∗ ~𝑖𝑖𝑑𝑁 0, 𝜎2 . 

 

Treating bi as a random effect (rather than a fixed term) is interpreted as the 

individuals in our study being some random sample from a larger population of 

subjects which we wish to make inference. We would treat subjects as fixed 

effects (i.e. as in the previous slide), if we were interested in making inference 

about the 6 specific people. 



Fitting Random Effects Model – SAS (1) 
proc mixed data = long1; 

 class pilltype personid; 

 model fat = pilltype / solution; 

 random intercept / subject = personid; ** person specific random effects; 

 estimate "all compared to none" pilltype 1 1 -3 1; 

run; 

 

Dependent Variable           fat 

Covariance Structure         Variance Components 

Subject Effect               personid   level 2 unit identifier 

Estimation Method            REML   estimation method (alternative: MLE) 

Residual Variance Method     Profile 

Fixed Effects SE Method      Model-Based 

Degrees of Freedom Method    Containment 

 

Dimensions 

Covariance Parameters             2 

Columns in X                      5   number of fixed effects 

Columns in Z Per Subject          1   1 random effect (random intercept) 

Subjects                          6 

Max Obs Per Subject               4 

 

Covariance Parameter Estimates 

Cov Parm      Subject     Estimate 

Intercept     personid      252.67       estimated  𝜎𝑠𝑢𝑏𝑗𝑒𝑐𝑡
2  

Residual                    107.00       estimated  𝜎2 



Fitting Random Effects Model – SAS (2) 
Fit Statistics 

-2 Res Log Likelihood           169.1 

AIC (smaller is better)         173.1 

AICC (smaller is better)        173.8 

BIC (smaller is better)         172.7 

 

Solution for Fixed Effects 

             NAME OF 

             FORMER                  Standard 

Effect       VARIABLE    Estimate       Error      DF    t Value    Pr > |t| 

Intercept                 16.5333      7.7424       5       2.14      0.0858 

pilltype     capsule       0.8833      5.9721      15       0.15      0.8844 

pilltype     coated       14.5333      5.9721      15       2.43      0.0279 

pilltype     none         21.5500      5.9721      15       3.61      0.0026 

pilltype     tablet             0           .       .        .         . 

 

        Type 3 Tests of Fixed Effects 

              Num     Den 

Effect         DF      DF    F Value    Pr > F 

pilltype        3      15       6.26    0.0057 

 

                                 Estimates 

                                    Standard 

Label                   Estimate       Error      DF    t Value    Pr > |t| 

all compared to none    -49.2333     14.6287      15      -3.37      0.0042 



Fitting Random Effects Model – SAS (3) 

 

Notice the error degrees of freedom are now 15 rather than 20 as in WRONG 

ANALYSIS, why? 

 

Also notice that the previous error variance of 359.6 has been split into subject-

to-subject variance 252.67 plus true error variance 107. Notice that because the 

error variance is smaller, the p-values for pilltype are more significant. (more 

details in next slides) 

 

Also notice that the point estimates for each pilltype is the same as those in 

fixed-effects model. 



Fitting Random Effects Model – Stata 
. xtmixed fat ib(last).pilltype || personid:, variance reml 

Mixed-effects REML regression                   Number of obs      =        24 

Group variable: personid                        Number of groups   =         6 

                                                Obs per group: min =         4 

                                                               avg =       4.0 

                                                               max =         4 

                                                Wald chi2(3)       =     18.77 

Log restricted-likelihood = -84.555945          Prob > chi2        =    0.0003 

------------------------------------------------------------------------------ 

         fat |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    pilltype | 

          1  |   .8833336   5.972126     0.15   0.882    -10.82182    12.58849 

          2  |   14.53333   5.972126     2.43   0.015     2.828181    26.23848 

          3  |      21.55   5.972126     3.61   0.000     9.844849    33.25515 

             | 

       _cons |   16.53333   7.742398     2.14   0.033     1.358512    31.70815 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 

-----------------------------+------------------------------------------------ 

personid: Identity           | 

                  var(_cons) |   252.6695     176.99      64.01811     997.247 

-----------------------------+------------------------------------------------ 

               var(Residual) |   106.9989   39.07045      52.30755    218.8739 

------------------------------------------------------------------------------ 

LR test vs. linear regression: chibar2(01) =    12.52 Prob >= chibar2 = 0.0002 



Fitting Random Effects Model – Stata 
. test 1.pilltype 2.pilltype 3.pilltype           // joint test for pilltype effect 

 ( 1)  [fat]1.pilltype = 0 

 ( 2)  [fat]2.pilltype = 0 

 ( 3)  [fat]3.pilltype = 0 

           chi2(  3) =   18.77 

         Prob > chi2 =    0.0003 

 

. lincom 1.pilltype+2.pilltype-3*3.pilltype       // all compared to none 

 ( 1)  [fat]1.pilltype + [fat]2.pilltype - 3*[fat]3.pilltype = 0 

------------------------------------------------------------------------------ 

         fat |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         (1) |  -49.23334   14.62866    -3.37   0.001    -77.90498   -20.56169 

------------------------------------------------------------------------------ 

 

. contrast {pilltype 1 1 -3 1}   // available in Stata 12 

Contrasts of marginal linear predictions 

Margins      : asbalanced 

------------------------------------------------ 

             |         df        chi2     P>chi2 

-------------+---------------------------------- 

fat          | 

    pilltype |          1       11.33     0.0008 

------------------------------------------------ 

-------------------------------------------------------------- 

             |   Contrast   Std. Err.     [95% Conf. Interval] 

-------------+------------------------------------------------ 

fat          | 

    pilltype | 

        (1)  |  -49.23334   14.62866     -77.90498   -20.56169 

-------------------------------------------------------------- 

 



Fitting Random Effects Model  

The uncertainty about how treatment will work NOW can be estimated by 

considering the deviation between the observed values for a person and the 

expected value for that person. The variance of the 𝑒𝑖𝑗
∗  in the new model is the 

variability AFTER accounting for person to person variability. 

 

*. Why the fitted 

lines are parallel? 



Fitting Random Effects Model  

This variability is calculated within each person and then (averaged) across 

individuals. Plot below shows the data and expected values for Person 5 and 

Person 3. The variance is 107. This is MUCH SMALLER than that in WRONG 

ANALYSIS. Hence tests for treatment differences are more powerful since the 

treatment differences (i.e. mean change in fat across different treatments) are 

compared to an uncertainty of 107 rather than 359. 



Fitting Random Effects Model  

 

Notice that the standard errors are much smaller than those in WRONG 

ANALYSIS, because here they are constructed using 107 rather than 359 as the 

estimate for σ2. Recall that the estimated standard errors are σ2(X’X)-1. 

 

 



Predict Random Effects 

We can predict (not estimate) the random intercepts for each person by adding 

solution option in the random statement. 
 

...; random intercept / subject = personid solution; run; 

 

Solution for Random Effects 

                                      Std Err 

Effect       personid    Estimate        Pred      DF    t Value    Pr > |t| 

Intercept    1            -8.0254      7.8911      15      -1.02      0.3253 

Intercept    2            -0.1356      7.8911      15      -0.02      0.9865 

Intercept    3           -10.2182      7.8911      15      -1.29      0.2149 

Intercept    4           -17.7914      7.8911      15      -2.25      0.0395 

Intercept    5            19.2835      7.8911      15       2.44      0.0274 

Intercept    6            16.8872      7.8911      15       2.14      0.0492 

 

In Stata, use: 
. predict varname, reffects 

 



Predict Random Effects 

To predict bi, we can use: 

𝑏𝑖
 = 𝐸 𝑏𝑖|𝑌𝑖  

which is called best linear unbiased prediction (BLUP). In the random intercept 

model,  

𝑏𝑖
 = 𝐸 𝑏𝑖|𝑌𝑖 =

𝑛𝑖  𝜎𝑠𝑢𝑏𝑗𝑒𝑐𝑡
2

𝑛𝑖  𝜎𝑠𝑢𝑏𝑗𝑒𝑐𝑡
2 + 𝜎2

𝑌𝑖
 − 𝜇  

which is known as “shrinkage estimator” – weighted derivation of 𝑌𝑖
  and 𝜇. 

Define: 𝜇𝑖 = 𝐸 𝑌𝑖𝑗|𝑏𝑖 = 𝜇 + 𝑏𝑖.    

When  𝜎𝑠𝑢𝑏𝑗𝑒𝑐𝑡
2 → ∞, 𝜇𝑖 = 𝑌𝑖

 ; 

            𝜎2→ ∞,         𝜇𝑖 = 𝜇 . 



Random Effects vs Fixed Effects 

 

 

 

 

 

 

 

 

 

 

 

The random effects are “shrunk”, i.e. smaller (closer to zero) than the fixed 

effects estimates. In this example with balanced data (i.e. same number of 

observations within subject), the standard errors are same using two methods. 

Using fixed subject effect, we cannot then test for subject level covariates since 

completely confounded 



Correlation Within Subjects 

The subject specific random effects in the model induce a correlation between 

observation within a person. 

 

 

 

 

 

 

 

 

This correlation is known as the “intraclass correlation” sometimes denoted ρI. 



Including Subject Specific Covariates 

Recall we know the gender of each patient. So we may expect that part of the 

reason there is variability in the bi in our model is that there are differences due 

to gender. 

𝑌𝑖𝑗 = 𝜇𝑗 + 𝑏𝑖 + 𝑒𝑖𝑗 -- LEVEL 1 

𝑏𝑖 = 𝛽0 + 𝛽1𝑓𝑒𝑚𝑎𝑙𝑒 + 𝛿𝑖 -- LEVEL 2 

where we assume 𝛿𝑖~𝑖𝑖𝑑𝑁 0, 𝜎𝑠𝑢𝑏𝑗𝑒𝑐𝑡
2  and 𝑒𝑖𝑗~𝑖𝑖𝑑𝑁 0, 𝜎2 . 

 

NOTICE that this 2-level model can be collapsed into a single equation: 

𝑌𝑖𝑗 = 𝜇𝑗 + 𝛽0 + 𝛽1𝑓𝑒𝑚𝑎𝑙𝑒 + 𝛿𝑖 + 𝑒𝑖𝑗 

where the 𝛽0 + 𝛽1𝑓𝑒𝑚𝑎𝑙𝑒 can get folded into the regular fixed regression part 

of the model, and now 𝛿𝑖 represents the subject to subject variability found 

after accounting for the fixed differences between males and females.  

So the Level 2 covariates can be treated simply as regular fixed covariates. 



Pancreas enzyme example - including gender 
proc mixed data = long1; 

 class pilltype personid gender; 

 model fat = pilltype gender/solution ddfm=bw; 

 random intercept / subject = personid solution; 

 estimate "all compared to none" pilltype 1 1 -3 1; 

run; 

 

Covariance Parameter Estimates 

Cov Parm      Subject     Estimate 

Intercept     personid     57.8536 

Residual                    107.00 

 

Type 3 Tests of Fixed Effects 

              Num     Den 

Effect         DF      DF    F Value    Pr > F 

pilltype        3      15       6.26    0.0057 

gender          1       4      12.51    0.0241 

 

                                 Estimates 

                                    Standard 

Label                   Estimate       Error      DF    t Value    Pr > |t| 

all compared to none    -49.2333     14.6287      15      -3.37      0.0042 



Pancreas enzyme example - including gender 
Solution for Fixed Effects 

             NAME OF 

             FORMER                            Standard 

Effect       VARIABLE    gender    Estimate       Error      DF    t Value    Pr > |t| 

Intercept                            3.2500      6.4479       4       0.50      0.6407 

pilltype     capsule                 0.8833      5.9721      15       0.15      0.8844 

pilltype     coated                 14.5333      5.9721      15       2.43      0.0279 

pilltype     none                   21.5500      5.9721      15       3.61      0.0026 

pilltype     tablet                       0           .       .        .         . 

gender                   F          26.5667      7.5101       4       3.54      0.0241 

gender                   M                0           .       .        .         . 

 

Now the person level variance has decreased dramatically to 57.85 from 252.67 

in previous model. But the Residual variance is unchanged. 

 

We can say that (252.67 − 57.85)/252.67 = 77% of the overall subject-to-

subject variability is explained by differences due to gender. Notice including 

gender has no effect on the within subject effect of pilltype. Generally there can 

be changes in the within subject effect when between subject covariates are 

included. 



Denominator degrees of freedom 

• For testing within subject covariates:  𝑛𝑖 − 1  −𝑁
𝑖=1  (# within subject 

covariates but don’t count intercept) 

• For testing between subject covariates: N - (# of between subject covariates 

+ intercept) 

where N is the number of groups (i.e. clusters) and 𝑛𝑖 is the number of 

observations within group i. 

For the pancreatic enzyme example, N = 6, 𝑛𝑖 = 4, i = 1. . . 6, so we have: 

• For testing within subject covariates (pilltype), d.f. = [ 4 − 1  6
𝑖=1 ] −3 = 18 

− 3 = 15 

• For testing between subject covariates (gender), d.f. = 6 − (1 + 1) = 4 

NOTE: IF the denominator degrees of freedom are larger than 25 then (similar 

to the t test which is well approximated by normal for larger n), it doesn’t really 

matter exactly what they are since the F-distribution is well approximated by 

the Chi-square distribution for larger n. 

NOTE: Stata uses the Chi-square test instead of F-test, in which the d.f. is 

simply the number of parameters being tested. 



Outcomes at the individual level, covariates at the 

cluster level 

Consider the following data representing age and gender standardized weight 

measurements (called indwt) on each member of 100 families. Family size 

ranges from 2 to 7 people - the NA’s are just place holders for families with less 

than 7 members. The SES variable represents high (1) and low (0) social 

economic status. 

 

 

 

 

 

 

 

 

What is the association between SES and standardized weight? 



Different Approaches 

• Ignore the fact that people are sampled in clusters of families. In total there 

are 416 individuals who we have weights. Regress individual weights on 

SES. - Will tend to lead to overly optimistic results (standard errors too 

small) 

• Create family level mean weights. There are 100 families. Regress mean 

family weight on SES. - If family sizes are about equal (gives equal weight 

to each mean) -- not a bad method for examining group level covariates but 

does not allow for individual level covariates 

• Randomly pick one member of each family so then we have 100 

independent individuals and then regress individual weight (of randomly 

chosen family member) on SES. - Throws away information (standard 

errors too large, less power) 

• Use a multilevel model that utilizes all 416 individuals measurements while 

partitioning variance due to family differences not explained by SES. – 

Correct compromise between methods 1 and 2 above, correctly tests subject 

level covariates while also allowing the possibility of individual level 

covariates. 



Results of Different Approaches: Family Weight Data 

Data were simulated under a few different scenarios which varied by how much 

of the family level variability was explained by SES. Overall in each scenario, 

the percent of total variability was fixed in the weight measurements that is 

coming from the family level clusters to be 0.80. In other words, 80% of 

variability in weight can be explained by family differences, while only .01, 

.02, or .05 of those differences can be explained by family SES. 

 

 

 

 

 

 

 

Notice the similarity between betaRE and betaagg. Notice that betaiid is 

rejecting highly in all cases (standard errors are too small) and that 

betaChoose1 is slightly conservative (larger standard errors), but not much. 



Random Intercepts 

 

In fat enzyme example: 

𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1 ∗ 𝑡𝑟𝑡 + 𝑒𝑖𝑗 

𝛽0𝑖 = 𝛽0 + 𝑏𝑖 

𝛽0𝑖 represent person specific intercept (based on trt reference of “tablet”, the 

intercept is the person specific estimate for trt of type “tablet”). We used the 

within person variability of 𝑒𝑖𝑗 to test for treatment effect. 

 

In family SES related to weight example: 

𝑌𝑖𝑗 = 𝛽0𝑖 + 𝑒𝑖𝑗 

𝛽0𝑖 = 𝛽0 + 𝛽1 ∗ 𝑆𝐸𝑆 + 𝑏𝑖 

𝛽0𝑖 represents family specific average weight. Variance of bi represents 

deviation of family specific average weight from that expected based on their 

SES. We used the between person variability of bi to test for SES effect. 



Random Intercepts and Random Slopes 

We have focused so far on taking into account clustering by including a random 

intercept into the model. It may also be of interest to examine whether the way 

that individual level covariates effect the outcome vary by cluster as well. This 

implies that slopes vary by cluster. 

We will consider a now classic dataset from the 1982 ”High School and 

Beyond” survey on Math Achievement of 7185 students from 160 schools. The 

data was used in Bryk and Raudenbush’s first edition 1992 text Hierarchal 

Linear Models 

• A step-by-step analysis of the data using SAS was done by Judith Singer in 

Journal of Educational and Behavioral Statistics and also can be found at 

http://www.ats.ucla.edu/stat/sas/seminars/sas_mlm/mlm_sas_seminar.htm 

• A step-by-step analysis of the data using R was done by John Fox as an 

appendix to his text An R and S-plus Companion to Applied Regression 

We want to examine whether the way a child’s own SES (cses) is related to 

his/her math achievement (mathach) varies by what school they are in. That is, 

can “contextual factors” (i.e. school level variability) moderate the relationship 

between SES and achievement. 



Random Slope: Compare to Interaction Model 

• Suppose we suspect the relationship between mathach and cses varies by 

school: 

– Our level 1 (student level) equation becomes: 

   mathachij = β0i + β1i*csesij + eij  

 note the subscript change from β1 to β1i for SES effect. 

– On level 2, we try to explain the variation of slopes of cses by school’s 

SES (meanses) and sector status (sector). 

• Fixed effects: We can use a deterministic model,  

  β1i = β10 + β11*meanses + β12*sector 

i.e., meanses and sector can fully explain the variation of slopes. 

When we plug level 2 equation back to level 1, we get a fixed-effects 

model with cses, meanses*cses, and sector*cses as the predictors. 

We could also estimate school-specific slopes, which is equivalent to 

add school*cses interactions.  But there will be too many predictors, 

since there are 160 levels for school.  



Random Slope: Compare to Interaction Model (2) 

• Random effects: If we think meanses and sector cannot fully 

explain the variation of slopes, we can include a random error term 

to level 2 equation for the unaccounted-for variation. 

  β1i = β10 + β11*meanses + β12*sector + b1i 

where b1i ~ N(0, σ2
cses). 

Plug level 2 equation back to level 1, we will get fixed effects for 

cses, meanses*cses, and sector*cses, and random slope term b1i *cses.  



Random Intercept and Slope and Covariates at Both Levels 

𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑋𝑖𝑗 + 𝑒𝑖𝑗 

𝛽0𝑖 = 𝛼00 + 𝛼01𝑊𝑖 + 𝛿0𝑖 

𝛽1𝑖 = 𝛼10 + 𝛼11𝑊𝑖 + 𝛿1𝑖 

where 𝑒𝑖𝑗~𝑁 0, 𝜎2  and 
𝛿0𝑖

𝛿1𝑖
~𝑁

0
0

,
𝜏00 𝜏10

𝜏10 𝜏11
 

Xij represents a Level 1 covariate, e.g. child specific social economic status (in 

Math Achievement example). The Level 1 equation assumes that in each 

cluster i that there is a linear relationship between the covariate and the 

outcome and this relationship is allowed to be different across clusters. 

 

The Level 2 equations and the distribution of 𝛿0𝑖 and 𝛿1𝑖 provide information 

about how the intercept and slope of the Level 1 equation vary across clusters, 

e.g. the school’s mean SES level as well as the type of school (private or 

public) may influence the intercept Math Achievement (𝛽0𝑖) and may influence 

the way that a child’s own SES relates to Math Achievement (𝛽1𝑖). 



Level 2 Covariates for Slopes Lead to Interactions 

When we plug in the Level 2 equations into the Level 1 equation, we get 

 

𝑌𝑖𝑗 = 𝛼00 + 𝛼01𝑊𝑖 + 𝛿0𝑖 + 𝛼10 + 𝛼11𝑊𝑖 + 𝛿1𝑖 𝑋𝑖𝑗 + 𝑒𝑖𝑗

= 𝛼00 + 𝛿0𝑖 + 𝛼10 + 𝛿1𝑖 𝑋𝑖𝑗 + 𝛼01𝑊𝑖 + 𝛼11𝑊𝑖 ∗ 𝑋𝑖𝑗 +𝑒𝑖𝑗 

 

Notice, if the coefficient for the interaction term 𝛼11 is not significant this 

implies that the cluster level covariate Wi does not help explain differential 

slope relationship between Xij and the outcome (but it does not exclude other 

source of variability among the slopes). 



Examining Random Intercepts and Slopes 

Math achievement example: from John Fox’s appendix to An R and S-PLUS 

Companion to Applied Regression 

 

 

 

 

 

 

 

 

 

 

 

Trellis display of math achievement by socio-economic status for 20 randomly 

selected Catholic schools. The broken lines give linear least-squares fits, the 

solid lines local-regression fits. 



Examining Random Intercepts and Slopes 

Math achievement example: from John Fox’s appendix to An R and S-PLUS 

Companion to Applied Regression 

 

 

 

 

 

 

 

 

 

 

 

Trellis display of math achievement by socio-economic status for 20 randomly 

selected Public schools. The broken lines give linear least-squares fits, the 

solid lines local-regression fits. 



Examining Random Intercepts and Slopes 

Math achievement example: from John Fox’s appendix to An R and S-PLUS 

Companion to Applied Regression 

 

 

 

 

 

 

 

 

 

 

 

Boxplots of intercepts and slopes for the SEPARATE regressions of math 

achievement on SES in Catholic and public schools. It appears SECTOR 

explains some variability in the intercepts and in the slopes, in what way? 



Examining Random Intercepts and Slopes 

Math achievement example: Results including both SECTOR and MEANSES 

as level 2 covariates 

 

 

 

 

 

 

 

 

 

 



Testing Whether Random Coefficients Are Needed 

• Testing whether a random coefficient should be included in a multilevel 

model involves the test of whether the variance of that random coefficient 

is equal to 0. This is problematic because the null hypothesis lies on the 

boundary of the parameter space. 

• A Wald test and the likelihood ratio statistics can be considered but the 

problem is technically they don’t have nominal Type 1 errors. 

• There is a substantial literature about approximate tests for the variance 

components, e.g. using a mixture of a chi-square as a reference distribution 

with k and k+1 degrees of freedom (where k is the number of variance 

components being tested). These methods do not appear to implemented 

yet in existing software. 

• Recommendation is to use the AIC or BIC criteria to decide by comparing 

models with and without the random coefficients. 



Random Intercept and Slope and Covariates at Both Levels 

𝑌𝑖𝑗 = 𝛽0𝑖 + 𝛽1𝑖𝑋𝑖𝑗 + 𝑒𝑖𝑗 

𝛽0𝑖 = 𝛼00 + 𝛼01𝑊𝑖 + 𝛿0𝑖 

𝛽1𝑖 = 𝛼10 + 𝛼11𝑊𝑖 + 𝛿1𝑖 

where 𝑒𝑖𝑗~𝑁 0, 𝜎2  and 
𝛿0𝑖

𝛿1𝑖
~𝑁

0
0

,
𝜏00 𝜏10

𝜏10 𝜏11
 

Specifically for the  example we’ve seen, Yij represents Math Achievement, 

where i subscripts schools and j subscripts kids within schools. Xij would be 

kid level SES, Wi could be an indicator of whether the school is catholic or 

public. 

In general Xij could by p-dimensional, and so β1i would also be p-dimensional 

with potential for random variation associated with each covariate. 

Furthermore Wi could be q-dimensional. 



General Formulation for the Mixed Effects Model 

Let Yi be the response vector for each level 2 unit i (e.g. either each school in 

Math Achievment example or family in weight-ses example or individual in fat 

enzyme example ) which will have length ni (e.g. where ni is the number of 

kids in school i or the number of persons in family or 4 treatments in enzyme 

example). Then we can write in general matrix notation... 



General Formulation for the Mixed Effects Model 

 

 

 

Note that across i the vectors of observations Yi are i.i.d. (e.g. schools are 

independent or mice are independent from one another), implicitly this is 

because we assume bi are ei are i.i.d. across i. Further, since we assume a linear 

link between Yi and the predictors, then the normality assumption on bi are ei 

imply that 

𝒀𝑖~𝑖. 𝑖. 𝑑 𝑁 𝑿𝑖𝛽, 𝒁𝑖𝑮𝒁𝑖
′ + 𝑹𝑖  

where G = Var(bi) and Ri is a matrix specifying the covariance of the ei which 

will typically be a function of a few parameters e.g. σ2 and ρ. 



Estimation by Maximum Likelihood 
Let 𝑉𝑎𝑟 𝒀𝑖 = 𝑽𝑖 = 𝒁𝑖𝑮𝒁𝑖

′ + 𝑹𝑖. Let Y be the vector which stacks all the 

 𝑛𝑖
𝑁
𝑖=1  observations, similarly let X be the matrix which stacks all the 

covariates Xi and finally let V be the block diagonal matrix with matrices Vi 

on the diagonal, similarly R is the block diagonal matrix of Ri. Then the log-

likelihood is a function of the multivariate normal distribution, i.e. 

 

 

which can be optimized to find the MLE’s of β, G, and R. 

This looks similar to the log likelihood for the general linear model except here 

V is more complicated and has several parameters within it that need to be 

estimated. 

Note, in the general linear model from before, we did NOT have G or Zi at all 

and R = σ2 I. 



Estimation by Maximum Likelihood 
OLS (ordinary least squares) can be shown to be the same as maximum likelihood 
for normally distributed data for the general linear model. Here notice the form 
𝑌 − 𝑋𝛽 ′𝑉−1 𝑌 − 𝑋𝛽  in the likelihood. This has the form of Generalized Least 

Squares (GLS) and represents the quantity we want to minimize. However, to do 
this requires V to be known and therefore G and R to be known. One approach is 
to use an estimated 𝑉  and plug this in, hence the task is to obtain reasonable 
estimates for G and R. 

In principle the likelihood is straightforward to maximize the likelihood but 
problems arise in estimating the variance parameters G and R. There are different 
numerical algorithms which can be used to find the optimal G and R, in smaller 
samples they may give different results. 

It can happen that ML finds the “best fitting” variance parameters to be negative. 
Since a negative variance is not a possible value, the reported estimate is taken to 
be zero. 

Also, since it is well known that ML variance estimates are biased (since they use n 
rather than n-1 as denominators), a commonly preferred technique (and the default 
in SAS/R, but not STATA) is to use REML which stands for restricted (or residual) 
maximum likelihood. Essentially REML uses an unbiased method for estimating 
the variance components. 



Mixed Effect Models for Non-normal Responses 

A generalized linear model which incorporates random effects is called a 

“generalized linear mixed model”. 

As long as the link is linear, it is feasible to obtain estimates for the mixed 

effect model 𝒀𝑖 =  𝑿𝑖𝛽 + 𝒁𝑖𝑏𝑖 + 𝑒𝑖. When our outcome data is not modeled 

well with a linear link to the mean structure, e.g. binary data with a logit link, 

or Poisson data with a log link, then estimation becomes much more difficult 

using Maximum likelihood. 

The reason is that the corresponding likelihood 

 

 

has an integral in it that does not lend itself to straightforward maximization. 



Estimation for Generalized Linear Mixed Models 

A variety of approaches are available (still an active area of research) to 

approximate this likelihood using theoretical and numerical methods. 

• In SAS, PROC NLMIXED/ In STATA: xtmelogit; xtmepoisson; gllamm 

(user-written package) in STATA / In R the nlme() function can be used to 

maximize the likelihood for a generalized linear mixed model, also 

Bayesian methods are commonly implemented for this model. Though 

theoretically maximizing the likelihood is the best approach, it is common 

to run into computational problems with these numerical methods. 

• Another approach, which may be referred to as Pseudo-likelihood 

(Wolfinger, R. and O’Connell, M. (1993) Generalized linear mixed models: 

a pseudo-likelihood approach. Journal of Statistical Computation and 

Simulation 48, 233-243) which is implemented by Proc GLIMMIX 

(formerly the GLIMMIX macro in SAS) and approximates the nonlinear 

likelihood with a linear form and iteratively improves the estimates for G 

and R. It can also be implemented in R using glmmPQL(). 

• Completely avoid the likelihood and instead focus on Generalized 

Estimating Equations (GEE). 



Generalized Estimating Equations 
Consider again 𝒀𝑖 which represents the vector of observations in the i

th
 cluster. 

Let E(𝒀𝑖) = μi which is linked to the linear predictor such that g(μi) = Xiβ. Let 
Var(𝒀𝑖) ≡ Var(𝒀𝑖; β, α) where α represents parameters that model the 
correlation structure within individuals. 

Parameters β are then estimated by solving the following score equation 

 
𝜕𝜇𝑖

𝜕𝛽

′

𝑉𝑎𝑟 𝑌𝑖
−1 𝑌𝑖 − 𝜇𝑖 = 0

𝑁

𝑖=1

 

 

• The key point which makes this method feasible and robust is that we don’t 
need to know Var(𝒀𝑖), the estimates for β are consistent even if Var(𝒀𝑖) is 
misspecified.  

• In GEE we use what is called the “working correlation matrix” as the best 
guess to the structure of Var(𝒀𝑖). 

• This lack of focus on the Var(𝒀𝑖) is the key difference between random 
effects modeling and using GEE. With GEE, the focus is entirely on getting 
good estimates of β and their standard errors. We will not obtain estimates 
of person level variability or be able to say that some covariate explained 
X% of the between person variability. 



Standard Errors for GEE 

There are two types of standard errors available for GEE: 

1. Model Based taken from the Co𝑣 𝛽 = 𝐼0
−1 where 

𝐼0 =  
𝜕𝜇𝑖

𝜕𝛽

′
𝑉𝑖

−1𝑁
𝑖=1

𝜕𝜇𝑖

𝜕𝛽
 

2. Empirical or robust or “sandwich formula” which uses Co𝑣 𝛽 = 𝐼0
−1𝐼1𝐼0

−1 

where 𝐼1 =  
𝜕𝜇𝑖

𝜕𝛽

′
𝑉𝑖

−1𝐶𝑜𝑣 𝑌𝑖 𝑉𝑖
−1𝑁

𝑖=1
𝜕𝜇𝑖

𝜕𝛽
 where 𝐶𝑜𝑣 𝑌𝑖  is replaced by 

the sum of squared residuals, i.e. 𝑌𝑖 − 𝜇𝑖 𝛽  𝑌𝑖 − 𝜇𝑖 𝛽 ′ 

The Model Based standard errors will only be correct when the correlation 

structure for Vi is specified correctly. But, the robust “sandwich” estimator can 

perform poorly in data with small samples. The “sandwich” estimator is 

consistent for the standard errors even when the correlations are specified 

incorrectly, but this property doesn’t kick-in unless the N is large especially 

compared to the ni (i.e. more clusters not more measurements within cluster) 

Both SAS and R use the robust standard errors by default. Stata uses the model 

based by default. 



Implementing GEE in SAS, R, and Stata 

In SAS: use Proc GENMOD with a Repeated statement. 

In R: use function gee() 

In STATA: use xtgee or xtreg with the pa “population average” option 

 

Need to specify the “working correlation matrix”, that is, a covariance 

structure that mimics the likely covariance structure in the data. Common 

structures are: Compound symmetry or Exchangeable, Autoregressive, 

Unstructured, and Independent. 



Pros and Cons of GEE compared to Generalized linear 

Mixed effect modeling (GLMM) 

• GEE: Only one level of clustering, GLMM: multiple levels 

• GEE: Not designed for inference about the covariance of random part, 

GLMM: Can do inference on covariance of error structure (random part) 

• GEE: Does not give predicted values for each cluster, GLMM: can obtain a 

predicted value separate for each cluster. 

• GEE: Computationally straightforward and fast, GLMM: Computationally 

hard and slow 

• GEE: Consistent estimates of fixed effect parameters, GLMM: Consistent 

estimates of fixed effects parameters and most efficient if random effects 

covariance structure is correct. 

• GEE: Assumes missing data is MCAR, GLMM: Assumes missing data is 

MAR 

• GEE: fits marginal model, GLMM: fits conditional model 



Marginal versus Conditional Models 

There are two main ways to build in correlation in a statistical model: 

• Marginal: Assume a model, e.g. logistic, that holds averaged over all the 

clusters (sometimes called population averaged). Coefficients have the 

interpretation as the average change in the response (over the entire 

population) for a unit change in the predictor. 

• Conditional: Assume a model specific to each cluster (sometimes called 

subject specific). If you want to know about the population, average it over 

all the clusters. Coefficients have the interpretation as the change in the 

response for each cluster in the population. 

 

NOTE: when the outcome-predictor relationship is linear, these are equivalent. 

That is, the average of the individual’s coefficients is the same as the overall 

population (or marginal) coefficient. When the relationship is non-linear, e.g. 

logit, they are NOT the same. See example taken from VGSM text Section 8.5. 



Marginal versus Conditional Models 
Hypothetical example from VGSM text Section 8.5... 

Suppose we are modeling the chance that a patient will be able to withstand a 
course of chemotherapy without serious adverse reactions. Patients have very 
different tolerances for chemotherapy, so the subject specific curves are quite 
different (See plots on next pages)... 

For further reading of the differences between marginal (GEE) and conditional 
models (GLMM) see: 

Carriere I and Bouyer J (2002) Choosing marginal or random-effects models for longitudinal 
binary responses: application to self-reported disability among older persons, BMC Medical 
research Methodology, 2:15. 

Burton, P., Gurrin, L., Sly, P. Tutorial in Biostatistics: Extending the Simple Linear 
Regression Model to Account for Correlated Responses: An Introduction to Generalized 
Estimating Equations and Multi-Level Modelling” Statistics in Medicine 17, 1261-1291 
(1998). 

Anath CV, Platt RW, Savitz DA (2005) Regression Models for clustered binary responses: 
implications of ignoring the intracluster correlation in an analysis of perinatal mortality in 
twin gestations. Annals of Epidemiology, 15(4), 293-301. 

Hubbard AE, Ahern J, Fleischer NL et al. (2010) To GEE or Not to GEE Comparing 
Population Average and Mixed Models for Estimating the Associations Between 
Neighborhood Risk Factors and Health. Epidemiology, Volume 21, Number 4, July 2010 











Non-Linear Link: Georgia Birthweight Example 

 

Georgia Birthweight data: birthweights of first-born and last-born infants from 

mothers (each of whom had five children) from vital statistics in Georgia. 

(VGSM Chapter 8.3.2) 

 

 

Research question: How the low birthweight status (<3,000g) of babies 

changes by birth order (first to fifth) and whether this difference depends on 

the age of the woman when she had her first-born.  



Georgia Birthweight Example: independent correlation 
. xtgee lowbrth birthord initage, i(momid) corr(ind) family(binomial) link(logit) ef 

GEE population-averaged model                   Number of obs      =      1000 

Group variable:                      momid      Number of groups   =       200 

Link:                                logit      Obs per group: min =         5 

Family:                           binomial                     avg =       5.0 

Correlation:                   independent                     max =         5 

                                                Wald chi2(2)       =     18.13 

Scale parameter:                         1      Prob > chi2        =    0.0001 

 

Pearson chi2(1000):                1003.09      Deviance           =   1299.35 

Dispersion (Pearson):             1.003089      Dispersion         =  1.299354 

------------------------------------------------------------------------------ 

     lowbrth | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    birthord |   .9204561   .0430753    -1.77   0.077     .8397861    1.008875 

     initage |   .9155828   .0207316    -3.89   0.000      .875838    .9571313 

       _cons |   3.505028   1.477288     2.98   0.003     1.534368    8.006694 

------------------------------------------------------------------------------ 

 

This is equivalent to:  

 
. glm lowbrth birthord initage, family(binomial) link(logit) ef 



Georgia Birthweight Example: exchangeable correlation 
. xtgee lowbrth birthord initage, i(momid) corr(exch) family(binomial) link(logit) ef 

GEE population-averaged model                   Number of obs      =      1000 

Group variable:                      momid      Number of groups   =       200 

Link:                                logit      Obs per group: min =         5 

Family:                           binomial                     avg =       5.0 

Correlation:                  exchangeable                     max =         5 

                                                Wald chi2(2)       =     11.30 

Scale parameter:                         1      Prob > chi2        =    0.0035 

------------------------------------------------------------------------------ 

     lowbrth | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    birthord |   .9204098   .0359157    -2.13   0.034     .8526408    .9935651 

     initage |   .9148199   .0308985    -2.64   0.008      .856221    .9774293 

       _cons |   3.553325   2.144814     2.10   0.036     1.088537    11.59917 

------------------------------------------------------------------------------ 

 

Robust standard errors: 
. xtgee lowbrth birthord initage, … vce(robust) 

------------------------------------------------------------------------------ 

             |             Semirobust 

     lowbrth | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    birthord |   .9204098     .03542    -2.16   0.031     .8535413    .9925168 

     initage |   .9148199   .0312663    -2.60   0.009     .8555464    .9781999 

       _cons |   3.553325   2.167263     2.08   0.038     1.075142    11.74368 

------------------------------------------------------------------------------ 

 

 

 



Georgia Birthweight Example: exchangeable correlation 
proc genmod data=bwt descending; 

 class momid; 

 model lowbrth=birthord initage / dist = binomial link = logit type3; 

 repeated subject = momid /type = cs modelse; 

 estimate "OR(birthord)" birthord 1/exp; 

 estimate "OR(initage)" initage 1/exp; 

run; 

   Exchangeable Working 

        Correlation 

Correlation    0.3049933764      In Stata, use –estat wcor- after –xtgee- to obtain this estimate 

 

  GEE Fit Criteria 

QIC         1309.6471            similar to AIC/BIC in LMM. In stata, download –qic- package 

QICu        1305.3556 

 

             Analysis Of GEE Parameter Estimates 

              Empirical Standard Error Estimates 

                   Standard   95% Confidence 

Parameter Estimate    Error       Limits            Z Pr > |Z| 

Intercept   1.2679   0.6084   0.0754   2.4603    2.08   0.0372 

birthord   -0.0829   0.0384  -0.1582  -0.0077   -2.16   0.0307 

initage    -0.0890   0.0341  -0.1558  -0.0222   -2.61   0.0090 

 

             Analysis Of GEE Parameter Estimates 

             Model-Based Standard Error Estimates 

                   Standard   95% Confidence 

Parameter Estimate    Error       Limits            Z Pr > |Z| 

Intercept   1.2679   0.6034   0.0853   2.4504    2.10   0.0356 

birthord   -0.0829   0.0390  -0.1594  -0.0064   -2.12   0.0336 

initage    -0.0890   0.0338  -0.1552  -0.0229   -2.64   0.0084 



Georgia Birthweight Example: GLMM 
proc glimmix data=bwt; 

 class momid; 

 model lowbrth(descending)=birthord initage / dist = binomial link = logit solution; 

 random intercept / subject = momid; 

 estimate "OR(birthord)" birthord 1/exp; 

 estimate "OR(initage)" initage 1/exp; 

run; 

 

The GLIMMIX Procedure 

       Covariance Parameter Estimates 

                                    Standard 

Cov Parm     Subject    Estimate       Error 

Intercept    momid        1.5042      0.2755 

 

                   Solutions for Fixed Effects 

                         Standard 

Effect       Estimate       Error       DF    t Value    Pr > |t| 

Intercept      1.4250      0.6700      198       2.13      0.0347 

birthord     -0.09961     0.05132      799      -1.94      0.0526 

initage       -0.1002     0.03684      799      -2.72      0.0067 

 

                                       Estimates 

                            Standard                                    Exponentiated 

Label           Estimate       Error       DF    t Value    Pr > |t|         Estimate 

OR(birthord)    -0.09961     0.05132      799      -1.94      0.0526           0.9052 

OR(initage)      -0.1002     0.03684      799      -2.72      0.0067           0.9047 



Georgia Birthweight Example: GLMM 
. xtmelogit lowbrth birthord initage || momid:, or var 

Mixed-effects logistic regression               Number of obs      =      1000 

Group variable: momid                           Number of groups   =       200 

                                                Obs per group: min =         5 

                                                               avg =       5.0 

                                                               max =         5 

Integration points =   7                        Wald chi2(2)       =     11.85 

Log likelihood = -588.07113                     Prob > chi2        =    0.0027 

------------------------------------------------------------------------------ 

     lowbrth | Odds Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    birthord |   .8872745   .0500702    -2.12   0.034     .7943711    .9910432 

     initage |   .8808974   .0406081    -2.75   0.006     .8047967    .9641941 

       _cons |   6.009049   4.991562     2.16   0.031       1.1796    30.61095 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

  Random-effects Parameters  |   Estimate   Std. Err.     [95% Conf. Interval] 

-----------------------------+------------------------------------------------ 

momid: Identity              | 

                  var(_cons) |    2.58756   .5393782      1.719718    3.893354 

------------------------------------------------------------------------------ 

LR test vs. logistic regression: chibar2(01) =   123.21 Prob>=chibar2 = 0.0000 

 

Note: Stata and SAS use different methods (MLE vs Pseudo-likelihood) to estimate the 
parameters, so the results are slightly different. 



GEE vs GLMM: Interpretation for ORs 

 

GEE: Odds of having a low birthweight baby decrease by 8% with each 

increase in birth order. It represents the Odds of having a low birthweight baby 

for a randomly chosen mom compared to odds of having a low birthweight 

baby for another randomly chosen mom at lower birth order. 

 

 

GLMM: Odd of having a low birthweight baby decrease by 11% with each 

increase in birth order, for a specific mom. 

 

Note: It is very common to see the OR from the random effect model being 

larger (farther from 1) in magnitude than the Population average (i.e. averaging 

over different rates of abstaining at different clinics) estimate. 


