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Review of Generalized Linear Models (GLM)

Consider independent data Yi, i = 1, . . . ,m with the covariates of Xi. In GLM, the probability model

for Yi has the following specification:

• Random component: Yi is assumed to follow distribution that belongs to the exponential family.

Yi |Xi ∼ f (θi, ϕ),

where ϕ is the dispersion parameter.

• Systematic component: given covariates Xi, the mean of Yi can be expressed in terms of the

following linear combination of predictors.

ηi = XT
i β,

• Link function: associates the linear combination of predictors with the transformed mean response.

ηi = g(µi),

where µi = E(Yi |Xi).
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Exponential Family

In the random component of GLM, Yi is assumed to follow a probability distribution that belongs to

the exponential family.

The density functions of the exponential family of distributions have this general form:

f (y; θ, ϕ) = exp

{
yθ − b(θ)

a(ϕ)
+ c(y, ϕ)

}
, (1)

where θ is called the canonical parameter and ϕ the scale (dispersion) parameter.

Note that a( · ) and b( · ) are some specific functions that distinguish one member of the exponential

family from another. If ϕ is known, this is an exponential family model with only canonical parameter

of θ.

The exponential family of distribution include the normal, Bernoulli, and Poisson distributions.
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Properties of Exponential Family

If Y ∼ f (y; θ, ϕ) in (1) then

E(Y ) = µ = b′(θ)

Var(Y ) = b′′(θ)a(ϕ).

< Proof >

Proof. The log-likelihood is

ℓ(θ, ϕ) = log f (y; θ, ϕ)

=
yθ − b(θ)

a(ϕ)
+ c(y, ϕ).

Therefore

∂ℓ

∂θ
=

y − b′(θ)

a(ϕ)

∂2ℓ

∂θ2
= −b′′(θ)

a(ϕ)
.
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< Proof (cont.) > Using the fact that

E

(
∂l

∂θ

)
= 0,

E

(
∂2ℓ

∂θ2

)
= −E

(
∂l

∂θ

)2

,

we get

E

(
y − b′(θ)

a(ϕ)

)
= 0

⇒ E(Y ) = b′(θ)

E

(
∂l

∂θ

)2

= E

{
(y − b′(θ))2

a2(ϕ)

}
=

Var(Y )

a2(ϕ)
,

hence

Var(Y )

a2(ϕ)
=

b′′(θ)

a(ϕ)

⇒ Var(Y ) = b′′(θ)a(ϕ).
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Examples of Exponential Family

• Gaussian

f (y; θ, ϕ) =
1√
2πσ2

exp

{
−(y − µ)2

2σ2

}
= exp

{
yµ− µ2/2

σ2
− 1

2
(y2/σ2 + log(2πσ2))

}
so

θ = µ

b(θ) = θ2/2

c(y, ϕ) = −1

2
(y2/σ2 + log(2πσ2))

a(ϕ) = ϕ = σ2

then

µ = b′(θ) = θ

Var(Y ) = b′′(θ)a(ϕ) = σ2
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• Binomial: Y = s/m, frequency of successes in m trials

f (y; θ, ϕ) =

(
m

my

)
πmy(1− π)m−my

= exp

{
y log

(
π

1−π

)
+ log(1− π)

1/m
+ log

(
m

my

)}
so

θ = log

(
π

1− π

)
= logit(π)

b(θ) = − log(1− π) = log[1 + exp(θ)]

c(y, ϕ) = log

(
m

my

)
a(ϕ) =

1

m

then

µ = b′(θ) =
exp(θ)

1 + exp(θ)
= π

Var(Y ) = b′′(θ)a(ϕ) = π(1− π)/m
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• Poisson: Y = number of events (counts)

f (y; θ, ϕ) =
e−λλy

y!

= exp {y log λ− λ− log(y!)}

so

θ = log λ

b(θ) = λ = exp(θ)

c(y, ϕ) = − log(y!)

a(ϕ) = 1

then

µ = b′(θ) = exp(θ) = λ

Var(Y ) = b′′(θ)a(ϕ) = exp(θ) = λ
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Components of GLM

• Canonical link function: a function g( · ) such that

η = g(µ) = θ

where θ is the canonical parameter.

– Gaussian: g(µ) = µ.

– Binomial: g(µ) = logit(µ), µ = π.

– Poisson: g(µ) = log(µ), µ = λ.

• Variance function: a function V ( · ) such that

Var(Y ) = V (µ)a(ϕ).

Usually a(ϕ) = wϕ where ϕ is the scale parameter and w is a weight.

– Gaussian: V (µ) = 1.

– Binomial: V (µ) = µ(1− µ).

– Poisson: V (µ) = µ.

Alternative Link Functions

For binomial data,

• Logit: g(µ) = log µ
1−µ, β is the log-odds ratio.

• Probit: g(µ) = Φ−1(µ).

• Complementary log-log: g(µ) = log(− log(1− µ)), β is the log hazard ratio.
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Data Example: Seizure Data Figure: Boxplots of square-root transformed seizure counts per two

Visit (0 is baseline)
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the patients were randomized to either placebo or progabide treatment.
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• Using only the responses at week 4.
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> library (lattice)

> seize <- read.table("data/seize.data",col.names = c("id", "seizure", "week", "progabide",

+ "baseline8", "age"))

> seize$base2 <- seize$baseline8 / 4

> seize.lm <- glm (I(log (seizure + 0.5)) ~ age + base2 + progabide,

+ data = seize, subset = week == 4,family = gaussian)

> summary (seize.lm)

Call:

glm(formula = I(log(seizure + 0.5)) ~ age + base2 + progabide,

family = gaussian, data = seize, subset = week == 4)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.9216 -0.3450 0.2560 0.5158 1.4711

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.698590 0.550308 1.269 0.2096

age 0.008016 0.016986 0.472 0.6389

base2 0.109705 0.015851 6.921 5.09e-09 ***

progabide -0.457042 0.208729 -2.190 0.0328 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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(Dispersion parameter for gaussian family taken to be 0.634476)

Null deviance: 68.647 on 58 degrees of freedom

Residual deviance: 34.896 on 55 degrees of freedom

AIC: 146.45

Number of Fisher Scoring iterations: 2

> par (mfrow = c(2, 2))

> plot (seize.lm)
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The choice of scale for analysis is an important aspect of model selection.

• A common choice is between Y vs. log Y .

• What characterizes a “good” scale? In classical linear regression analysis a good scale should combine

– constancy of variance,

– approximate Normality of errors, and

– additivity of systematic effects.

• There is usually no a priori reason to believe that such a scale exists.

• For poisson distributed Y ,

– Y 1/2 gives approximate constancy of variance,

– Y 2/3 does better for approximate symmetry or Normality,

– log Y produces additivity of the systematic effects,

– no single scale will simultaneously produce all the desired properties.

• With the introduction of GLM, scaling problems are reduced.

– normality and constancy of variance are no longer required,

– however, the way in which the variance depends on the mean must be known.
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> seize.glm <- glm (seizure ~ age + base2 + progabide,

+ data = seize, subset = week == 4,

+ family = poisson)

> summary (seize.glm)

Call:

glm(formula = seizure ~ age + base2 + progabide, family = poisson,

data = seize, subset = week == 4)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.1636 -1.0246 -0.1443 0.4865 3.8993

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.775574 0.284598 2.725 0.00643 **

age 0.014044 0.008580 1.637 0.10169

base2 0.088228 0.004353 20.267 < 2e-16 ***

progabide -0.270482 0.101868 -2.655 0.00793 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 476.25 on 58 degrees of freedom

Residual deviance: 147.02 on 55 degrees of freedom

AIC: 342.79

Number of Fisher Scoring iterations: 5
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> plot (seize.glm)
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Maximum Likelihood Estimation for GLMs

Solve score equations, for j = 1, . . . , p, Sj(β) =
∂ℓ
∂βj

= 0.

The log-likelihood:

ℓ =

m∑
i=1

{
yiθi − b(θi)

a(ϕ)
+ c(yi, ϕ)

}
=
∑
i

ℓi

Sj(β) =
∂ℓ

∂βj
=
∑
i

∂ℓi
∂θi

∂θi
∂µi

∂µi

∂ηi

∂ηi
∂βj

∂ℓi
∂θi

=
1

a(ϕ)
(yi − b′(θi)) =

1

a(ϕ)
(yi − µi)

∂θi
∂µi

=

(
∂µi

∂θi

)−1

=

(
∂b′(θi)

∂θi

)−1

=
1

b′′(θi)
=

1

V (µi)

∂µi

∂ηi
=

(
∂ηi
∂µi

)−1

=

(
∂g(µi)

∂µi

)−1

=
1

g′(µi)

∂ηi
∂βj

= Xij
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Therefore

Sj(β) =

m∑
i=1

Xij

g′(µi)
[a(ϕ)V (µi)]

−1(yi − µi). (2)

• (∂µi∂βj
) =

Xij

g′(µi)
: Jacobian matrix.

• For fixed ϕ, the score function depends on µi and Vi only

• No knowledge on ϕ is needed for deriving the MLE of β.

Write (2) in matrix form

S(β) =

m∑
i=1

(
∂µi

∂β

)T

[a(ϕ)V (µi)]
−1(yi − µi).
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Hence, the Fisher’s Information is

I(β) = −E
∂S(β)

∂β
=
∑
i

(
∂µi

∂β

)T

[a(ϕ)V (µi)]
−1

(
∂µi

∂β

)
.

The observed counterpart is

−∂S(β)/∂β = I(β)−
m∑
i=1

∂Ai

∂β
(yi − µi(β)),

where Ai =
(
∂µi
∂β

)T

[a(ϕ)V (µi)]
−1. For canonical links, the observed one equals the expected one

(exercise).

Moreover (Cox and Reid, 1987),

I(β, ϕ) = E

{
−∂2S(β)

∂β∂ϕ

}
= 0.

The information matrix is of the form (
I(β) 0

0 I(ϕ)

)
.

The MLEs β̂ and ϕ̂ are asymptotically independent, I−1(β) is the asymptotic variance of β̂ and I−1(ϕ)

is the asymptotic variance of ϕ.
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Why Not Weighted Least Squares

The WLS approach need to minimize the following objective function

Q(β, ϕ) =

m∑
i=1

yi − µi(β)

Var(Yi;β, ϕ)
.

Minimizing Q is equivalend to solving ∂Q(β, ϕ)/∂β = 0, where

∂Q(β, ϕ)/∂β =

m∑
i=1

{
−2

(
∂µi(β)

∂β

)T

Var−1(Yi;β, ϕ)(yi − µi(β)) +

(
∂

∂β
Var−1(Yi;β, ϕ) · (yi − µi(β))

2

)}

• The first term is identical to S(β).

• The second term has in general non-zero expectations. When Var−1(Yi) is free of β or E[(yi −

µi(β))
2] = 0, ∂Q(β, ϕ)/∂β ≡ S(β, ϕ), and hence, the WLS estimator and the MLE are equivalent.

• In general, E[Q(β, ϕ)] ̸= 0; hence, the WLS estimator is generally inconsistent.
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Iterative Weighted Least Squares

The MLE of β can be obtained by iterative weighted least squares (IWLS).

• When g(µ) = µ = Xβ, (2) immediately suggests an IWLS algorithm for solving the score equation:

1. For given β̂, calculate the weights

wi = V (µi; β̂)
−1.

2. Solve
∑

i X
T
i wi(yi − Xiβ) = 0 to get the next β̂.

3. Go back to step 1 to update wi’s.
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• (For fixed ϕ) When g is non-linear, the IWLS algorithm needs to be modified by constructing a

working response

Z = η̂ + (Y − µ̂)
∂η

∂µ

∣∣∣∣
µ=µ̂

and modifying the weights to account for the rescaling from Y to Z

wi =
1

V (µ̂)

1

g′(µ̂)2
.

– What is Z? g(y) ≃ g(µ) + (y − µ)g′(µ) = η + (y − µ)∂η/∂µ

– What is wi? Var(Z) =

(
∂η
∂µ

∣∣∣
µ=µ̂

)2

Var(Y ) = g′(µ̂)2V (µ̂).

– What is
∑

i X
T
i wi(zi − Xiβ) = 0?

This has the same form as (2) if the µ̂ in wi is replaced by µ (excercise).

– The IWLS algorithm can be justified as an application of the Fisher scoring method. (See Mc-

Cullagh and Nelder, 2nd edition, pages 41-43.)
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Fisher Scoring

To solve the score equations S(β) = 0, iterative method is required for most GLMs. The Newton-

Raphson algorithm uses the observed derivative of the score (gradient) and Fisher scoring method uses

the expected derivative of the score (i.e., Fisher’s information matrix, −Im)

The algorithm:

1. Find an initial value β̂
(0)
.

2. For j → j + 1 update β̂
(j)

via

β̂
(j+1)

= β̂
(j)

+
(
Î(j)
m

)−1
S(β̂

(j)
).

3. Evaluate convergence using changes in logL or ||β̂
(j+1)

− β̂
(j)
||.

4. Iterate until convergence criterion is satisfied.
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Measuring Goodness of Fit - Deviance and Pearson’s X2

Deviance

Deviance is a quantity to measure how well the model fits the data.

• For µi, two approaches to estimate µi

– from the fitted model: µi(β̂),

– from the full (saturated) model: yi, the observed response.

• One can compare µi(β̂) with yi through the likelihood function.

– Express the likelihood as a function of µi’s and ϕ

L(µ, ϕ) =
m∏
i=1

Li =

m∏
i=1

f (yi;µi, ϕ)

– The deviance of the fitted model is defined as

D(µ̂; y) = −2

m∑
i=1

{logLi(µ̂, ϕ)− logLi(yi, ϕ)}a(ϕ).

– Deviance is proportional to the likelihood ratio test statistic comparing the null hypothesis that

the fitted model is adequate versus the saturated alternative.

– A small value in D would indicate that the fitted model describes the data rather well.
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Deviance examples:

• Normal:

log f (yi; θi, ϕ) =
(yi − µi)

2

2σ2
,

D(y, µ̂) =

m∑
i=1

(yi − µ̂i)
2 = SSE.

The sum of residual squares!

• Binomial:

log f (yi; θi, ϕ) = mi {yi log µ + (1− yi) log(1− µ)} ,

D(y, µ̂) = 2

m∑
i=1

{
miyi log

(
yi
µ̂i

)
−mi(1− yi) log

(
1− yi
1− µ̂i

)}
.

• Poisson:

log f (yi; θi, ϕ) = yi log(µ)− µ

D(y, µ̂) = 2

m∑
i=1

{
yi log

(
yi
µ̂i

)
− (yi − µ̂i)

}
,

where the second term can be omitted as its sum is 0.

The deviance is the sum of squared deviance residuals. D =
∑m

i=1 rD
2
i . For Poisson,

rDi
= sign(yi − µ̂i)

{
2

(
yi log

(
yi
µ̂i

)
− (yi − µ̂i)

)}1/2
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Pearson’s X2

• Another measure of discrepancy is the generalized Pearson’s X2 statistic

X2 =

m∑
i=1

(yi − µ̂i)
2

V (µ̂i)
.

Note that it is the sum of the squared Pearson’s residuals.

• Pearson’s X2 examples:

– Normal: X2 = residual sum of squares.

– Poisson: X2 =
∑m

i=1 (yi − µ̂i)
2/µ̂i

– Binomial: X2 =
∑m

i=1 (yi − µ̂i)
2/[µ̂i(1− µ̂i)].

• For normal responses, when the model is correct, both D and X2 have exact χ2 distribution. For

other models both have (approximate) asymptotic χ2 distribution (but the approximation may not

be very good even when m is very large).

• The deviance has a general advantage as a measure of discrepancy in that it is additive when com-

paring nested models if ML estimates are used, while the generalized Pearson’s X2 is sometimes

preferred for easy interpretation.
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Model Diagnosis and Residuals

Like ordinary linear models, residuals can be used to assess model fit. For GLM, we require extended

definitions of residuals.

Types of Residuals

• Response residuals

rR = y − µ̂.

• Pearson residuals (standardized residuals)

rP =
y − µ̂√
V (µ̂)

.

– Constant variance and mean zero if the variance function is correctly specified.

– Useful for detecting variance misspecification (and autocorrelation).

• Working residuals

rW = (y − µ̂) · ∂η

∂µ

∣∣∣∣
µ=µ̂

= Z − η̂,

where Z = η̂ + (y − µ̂) ∂η
∂µ

∣∣∣
µ=µ̂

.
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• Deviance residuals: contribution of Yi to the deviance.

rD = sign(y − µ)
√

di, where

m∑
i=1

di = D.

– Closer to a normal distribution (less skewed) than Pearson residuals.

– Often better for spotting outliers.

• For more details in residuals in GLM, see McCullagh and Nelder (2nd Edition, Section 2.4) and

Pierce and Schafer (JASA 1986).
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Overdispersion

• For Poisson regression, it is expected that Var(Yi) = µi. However this can be sometimes violated.

• Overdispersion describes the situation that the data are overdispersed when the actually Var(Yi)

exceeds the GLM variance a(ϕ)V (µ).

• For Binomial and Poisson models we often find overdispersion:

– Binomial: Y = s/m, E(Y ) = µ, Var(Y ) > µ(1− µ)/m.

– Poisson: E(Y ) = µ, Var(Y ) > µ.

How Does Overdispersion Arise?

• If there is population heterogeneity, say, clustering in the population, then overdispersion can be

introduced.

• If there are covariates ignored.
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Suppose there exists a binary covariate, Zi and that

Yi |Zi = 0 ∼ Poisson (λ0)

Yi |Zi = 1 ∼ Poisson (λ1)

Pr(Zi = 1) = π

Then

E(Yi) =

Var(Yi) =

=

=

Therefore, if we do not observe Zi (e.g. latent variable) then the omitted factor leads to increased

variation.
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Quasi-Likelihood

Motivation - impact of model misspecification

Huber (1967) and White (1982) studied the properties of MLEs when the model is misspecified.

Setup

• Let Fθ be the assumed distribution family for independent data Yi, i = 1, . . . ,m.

• Let θ̂m be the MLE (based on m observations). That is, θ̂m solves the score equations that arise

from the assumed Fθ:
m∑
i=1

SF
i (θ̂m) = 0.

• However the true distribution of Yi is given by Yi ∼ G.
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Result

• θ̂m−→ θ∗ such that

EG

[
m∑
i=1

SF
i (θ

∗)

]
= 0.

• The estimator θ̂m is asymptotically normal:

√
m(θ̂m − θ∗)−→N

(
0, A−1BA−1

)
where

A = − lim
1

m

m∑
i=1

EG

[
∂

∂θ
SF
i (θ)

∣∣∣∣
θ∗

]
B = lim

1

m

m∑
i=1

VarG
[
SF
i (θ)

∣∣
θ∗

]
= lim

1

m

m∑
i=1

EG

[
SF
i (θ)

∣∣
θ∗

]2
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• A is the expected value of the observed (based on the assumed model) information (times 1/m).

• B is the true variance of SF
i (θ) which may no longer be equal to minus the expected (under the true

model) derivative of SF
i (θ) if the assumed model is not true.

• In general θ̂ is not consistent to θ0. But sometimes we get lucky and θ∗ = θ0 — the model misspeci-

fication does not hurt the consistency of θ̂m.

• Sometimes we get even luckier and θ∗ = θ0 and A = B. The model misspecification does not hurt

our standard error estimates either.

• For GLM where we are modeling the mean E(Yi) = µi via a regression model with parameters β,

our estimator, β̂, will converge to whatever value solves

EG[S(β)] = 0.

35



PubH8452 Longitudinal Data Analysis - Fall 2014 Generalized Estimating Equations

Recall that we have

S(β) =

m∑
i=1

(
∂µi

∂β

)T

[a(ϕ)V (µi)]
−1(yi − µi).

As long as Yi ∼ G such that EG(Yi) = µi then our estimator will be consistent! We do not need

Poisson, or Binomial distribution for the GLM point estimate β̂.

Motivation - in practice

• There are situations where the investigators are uncertain about the probability mechanism by which

the data are generated

– underlying biologic theory is not fully understood

– no substantial (empirical) experience of similar data from previous studies is available
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• Nevertheless, the scientific objective can often be adequately characterized through regression:

– Systematic component

g(µ) = x′β

– Variances specification

V ar(y) = a(ϕ)V (µ)

• Least square is a special case for

yi = x′iβ + ϵi

– Systematic component: µi = E(yi | xi) = x′iβ

– Variances specification: V ar(yi) ≡ a(ϕ)

Distribution of ϵi is unspecified.
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Construction of quasi-likelihood

McCullagh and Nelder, 1989, Chapter 9. Wedderburn (1974) Biometrika.

Wedderburn (1974) proposed to use the quasi-score function to estimate β, i.e. by solving

S(β) =

m∑
i=1

Si(β) =

m∑
i=1

(
∂µi

∂β

)T

Var−1(Yi;β, ϕ)(yi − µi(β)) = 0 .

• The random component in the generalized linear models is replaced by the following assumptions:

E[Yi] = µi(β) and Var[Yi] = Vi = a(ϕ)V (µi).

• The quasi-likelihood function is

Q(µ; y) =

m∑
i=1

∫ µi

yi

yi − t

a(ϕ)V (t)
dt

and

S(β) = ∂Q/∂β.
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• S(β) possesses key properties of a score function

E[Si] = 0

Var[Si] = −E[∂Si/∂µi]

• S(β) would be the true score function for β if the Yi’s are indeed from an exponential family

distribution.

How to assess precision of β̂

Taylor expansion gives S(β̂)
.
=

√
m(β̂ − β0)

.
=


m∑
i=1

(∂µi
∂β

)′V −1
i (∂µi

∂β
)

m


−1

m∑
i=1

(∂µi
∂β

)′V −1
i (yi − µi(β))
√
m


↓ m → ∞ ↓ m → ∞

a−1 MVN(0, a)
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“Model-based” variance estimate of β̂{
m∑
i=1

(
∂µi

∂β

)T

V −1
i

(
∂µi

∂β

)}−1

β=
ˆβ

≡ A−1

“Robust” variance estimate of β̂

A−1

{
m∑
i=1

(
∂µi

∂β

)T

V −1
i (yi − µi(β))

2V −1
i

(
∂µi

∂β

)}
β=

ˆβ

A−1
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Summary for quasi-likelihood estimating equations

The quasi-likelihood regression parameter, β̂ for Yi, i = 1, . . . ,m is obtained as the solution to the

quasi-score equations, S(β) = 0, where

S(β) = DTV−1(Y − µ)

Dij =
∂µi

∂βj

V = diag(a(ϕ)V (µi))

• The covariance matrix of S(β) plays the same role as Fisher information in the asymptotic variance

of β̂:

Im = DTV−1D,

Var(β̂) ≈ I−1
m .

• These properties are based only on the correct specification of the mean and variance of Yi.

• Note that for the estimation of a(ϕ), the quasi-likelihood does not behave like a log likelihood.

Method of moments is used.

ã(ϕ) =
1

m− p

m∑
i=1

(Yi − µ̂i)
2

V (µ̂i)
=

χ2

m− p
,

where χ2 is the generalized Pearson statistics.
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Example: seizure data

In R, by specifying family = quasi (link = log, variance = ”mu”) or family = quasipoisson, glm will give

the same results.

> seize.glm2 <- glm (seizure ~ age + base2 + progabide,

+ data = seize, subset = week == 4,

+ family = quasi (link = log, variance = "mu"))

> summary (seize.glm2)

Call:

glm(formula = seizure ~ age + base2 + progabide,

family = quasi(link = log, variance = "mu"),

data = seize, subset = week == 4)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.1636 -1.0246 -0.1443 0.4865 3.8993

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.775574 0.448580 1.729 0.0894 .

age 0.014044 0.013524 1.038 0.3036

base2 0.088228 0.006862 12.858 <2e-16 ***

progabide -0.270482 0.160563 -1.685 0.0977 .

---
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Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasi family taken to be 2.484377)

Null deviance: 476.25 on 58 degrees of freedom

Residual deviance: 147.02 on 55 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 5

• The standard error estimates for the quasi-likelihood regression parameters are larger than that of

GLM.

• Note that AIC is no longer available for quasi-likelihood.
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Review of Estimating Functions

• Note: quasi-likelihood is also used more generally to refer to estimating functions (Heyde, 1997) but

we use it in a narrower sense in GLM with variance function being

Var(Y ) = a(ϕ)V (µ).

• We treat quasi-score equations as a special case of estimating equations. The previous variance of Y

is a special case of

Var(Y ) = V (µ, ϕ).

• An estimating function is a function of data and parameter, g(Y, θ), such that an estimator θ̂ of

θ is obtained as its root, that is g(Y, θ̂) = 0.

• An unbiased estimating function (UEF) has the property

Eθ[g(Y, θ)] = 0, for any θ ∈ Θ.
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Role of unbiasedness: under regularity conditions, unbiased estimating equations have roots which

are consistent estimators.

• Estimating functions form the basis of (almost) all of frequentist statistical estimation.

– Method of least squares (LS) (Gauss and Legendre): finite sample consideration

X T (Y − Xβ) = 0.

– Maximum likelihood (ML) (Fisher): asymptotic property

∑
i

∂

∂θ
log f (yi; θ) = 0.

– Method of moments (K. Pearson).

µr(θ) = E(Y r), r = 1, 2, . . . and µ̂r =
1

m

m∑
i=1

yri ; solve the equations of µr(θ) = µ̂r.
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Optimality

• For linear models, Gauss-Markov theorem says that the LS estimate is the linear unbiased minimal

variance (UMV) estimate for β, for fixed (finite) sample size.

• We know that the MLE is asymptotically unbiased and efficient (has minimal asymptotic variance

among asymptotically unbiased estimators).

• Consider a class of unbiased estimating functions,

G = {g(y; θ) : Eθ[g(y; θ)] = 0}.

Godambe (1960) defined g∗ ∈ G as an optimal estimating function among G if it minimizes

W =
E
[
g(y, θ)2

]
[E(∂g/∂θ)]2

= E

[
g(y, θ)

E(∂g/∂θ)

]2
. (3)

– The numerator is the variance, Var(g).

– The denominator: square of the averaged gradient of g.
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– We want the optimal g has small variance and on average as steep as possible near the true θ,

which are related to the asymptotic variance of θ̂.

– This is a finite sample criterion.

– W is the variance of the standardized estimating function: g(y, θ)/|E(∂g/∂θ)|.

• Godambe (1960) showed that the score functions (even non-linear ones) for θ,

ℓ̇(θ) =
∂ℓ(θ)

∂θ

where ℓ(θ) is the log-likelihood function, are optimal estimating functions. Here

W ∗ =
1

−E[ℓ̈(θ)]
=

1

E[ℓ̇(θ)2]
,

where ℓ̈(θ) = ∂2l(θ)/∂θ2 (“Cramer-Rao lower bound”). The denominator is Fisher’s information.
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• Godambe and Heyde (1987) proved that quasi-score function,

m∑
i=1

(
∂µi

∂β

)T

V −1
i

(
yi − µi(β)

)
,

where Vi = Var(Yi) = a(ϕ)V (µi) is optimal among unbiased estimation functions which are

linear in the data, that is, take the form

m∑
i=1

di(β, ϕ)(yi − µi(β)). (4)

Proof. Here is a sketch of the proof for the scalar case (Liang and Zeger, 1995).

For an unbiased estimating function of the form (4), the optimality criterion (3) reduces to

Wm =

∑m
i=1 d

2
iVi(∑m

i=1 di
∂µi
∂β

)2 =

∑m
i=1(di

√
Vi)

2{∑m
i=1(di

√
Vi)

(
∂µi
∂β

1√
Vi

)}2 ,

since...
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< Proof (cont.) >

For the quasi-score function,

d∗i (β, ϕ) =

(
∂µi

∂β

)
V −1
i ,

W ∗
m =

∑m
i=1

[(
∂µi
∂β

)2

V −1
i

]
{∑m

i=1

[(
∂µi
∂β

)
V −1
i

(
∂µi
∂β

)]}2

=

∑m
i=1

[(
∂µi
∂β

)2

V −1
i

]
{∑m

i=1

[(
∂µi
∂β

)2

V −1
i

]}2

=
1∑m

i=1

(
∂µi
∂β

1√
Vi

)2
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Using Cauchy - Schwarz’s inequality

(Σixiyi)
2 ≤ (Σix

2
i )(Σiy

2
i ),

it follows immediately that

W ∗
m < Wm

for any choice of di(β, ϕ).�

• The best unbiased linear estimating functions are not necessarily very good — there could be better

estimating functions that aren’t linear.

• When only the mean model is known, only the linear estimating function can be guaranteed to be

unbiased.
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• Very often it is easier to verify the unbiasedness of gi through defining some statistic Ti such that

E(gi |Ti) = 0.

– One advantage of the conditional unbiasedness is that we may consider a broader class of UEFs

in which the weight associated with gi can be a function of Ti,

m∑
i=1

di(θ,Ti)gi.

Follow the proof for quasi-score function, the optimal linear combination is

g =

m∑
i=1

E

(
∂gi
∂θ

|Ti

)T

Var(gi |Ti)
−1gi. (5)

such that the solution to the estimating equation has minimal asymptotic variance.
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Nuisance Parameter and Estimating Functions

When there is a nuisance parameter ϕ, i.e., the likelihood is f (y; θ, ϕ), if the dimension of ϕ increases

with the sample size m, the MLE for θ may not even be consistent.

• Godambe (1976) considered a complete and sufficient statistic T for ϕ for fixed θ, and showed

conditional score function
∂ log f (y |T = t; θ)

∂θ

is the optimal estimating function for θ.

• The conditional score function requires the existence of T , a complete and sufficient statistic for ϕ

that does not depend on θ. Such a statistic can be found for exponential family distributions, but

more generally t = t(θ). In the later case, ∂/∂θ[log f (y |T = t; θ)] depends on ϕ and hence is only

locally optimal at the true ϕ (Lindsay, 1982). Quasi-likelihood can also suffer this limitation.

• If Var(Y ) = V (µ, ϕ) ̸= a(ϕ)V (µ), the quasi-score function is no longer optimal.

• Liang and Zeger (1995) considered how to construct estimating functions for parameters of interest

in the presence of nuisance parameter and the absence of fully specified likelihood.
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Generalized Estimating Equations

• The data y = (y1, · · · ,ym) is decomposed into m “strata” and the yi’s are uncorrelated with each

other. The dimensions of yi’s are not required to be the same.

• Assuming the parameter, θ, is common to all m strata and the existence of an unbiased estimating

function, gi(yi; θ, ϕ), for each of the m strata, i.e.,

E(gi; θ, ϕ) = 0 ∀θ, ϕ, i.

• In a regression setting

E(yi) = µi(β),

where yi is an ni × 1 vector of responses, we can use

gi = yi − µi(β)
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and it leads to the optimal g among (4), namely

g =

m∑
i=1

(
∂µi

∂β

)T

Var(Yi)
−1
(
yi − µi(β)

)
. (6)

This is referred to as the generalized estimating equations (GEE1).

• Note that the dimension of gi varies from stratum to stratum and when ni = 1 for all i, g reduces

to the quasi-score function.

• It is a special case of (4) and (5).

• Quasi-score function is for independent, over-dispersed data (Poisson or binomial) while GEE1 is for

correlated data.
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Nuisance Parameter: Hello? I am Still Here.

• Even though we choose gi that does not include ϕ in its functional form, in general the distribution

of gi depends on ϕ.

• Liang and Zeger (1995) argued that the impact of the nuisance parameters on g and on the corre-

sponding solution of g = 0 is small, because it shares the orthogonality properties enjoyed by the

conditional score function.

1. E
(
g(θ, ϕ∗); θ, ϕ

)
= 0 for all θ, ϕ, and ϕ∗ where ϕ∗ is an incorrect value (estimate) for ϕ.

2. E
(
∂g(θ, ϕ∗)/∂ϕ∗; θ, ϕ

)
= 0 for all θ, ϕ, and ϕ∗.

3. Cov
(
g(θ, ϕ), ∂ log f (y; θ, ϕ)/∂ϕ

)
= 0 for all θ and ϕ.
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• Implications:

– when a
√
m-consistent estimator ϕ̂θ for ϕ is used, the asymptotic variance of θ̂ (solution to

g(θ, ϕ̂θ) = 0) is the same as if the true value of ϕ is known. Hence, the choice among
√
m-

consistent estimators is irrelevant, at least when m is large.

– the bias of g(θ, ϕ̂θ) with ϕ̂θ plugged into the EF is diminished at a faster rate than that of

Sθ(θ, ϕ̂θ), the ordinary score function evaluated at ϕ̂θ.

– robust - even if the assumption on how ϕ describes the distribution of the y’s is misspecified,

the solution remains consistent and its asymptotic variance is unaltered.
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Further Reading

• Chapter 2 and 9 of McCullagh and Nelder, 2nd edition.
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