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Introduction

• “Missing data” refers to data values that were intended to be collected but were not available for

some reason. In contrast to “unbalanced” studies by design, the reason of the missingness (the

“missing data mechanism”) should be considered in the analysis.

• The mechanism (“at random” or otherwise) by which data are lost is critical to understanding the

impact of missing data on the conclusions and supporting modeling and inference.

• Examples of missing data:

– A non-longitudinal example. A hormone level in blood samples were tested for 10 patients in the

treatment group and another 10 from the control group. However, 2 values from the treatment

group were missing. Why? The tubes were dropped or the two missing values were below the

lowest detectable level?

– In HIV clinical trials an often used outcome variable is serum HIV-RNA level. The higher this

level the sicker the person tends to be and therefore less likely to continue to report in.

• Consequences of missing data:

– Technical difficulty associated with unbalanced data.

– Missing data usually results in loss of information. Some naive methods for dealing missing data,

such as complete case analysis, result in even more severe efficiency loss.

– Missing data can introduce potentially very serious bias.
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Missing Value Mechanisms

Notation

• Assume that for each the i = 1, . . . ,m units, outcomes Yij and covariates Xij are taken at times

j = 1, . . . , n.

• Let Yi = (Yi1, . . . , Yin)
T be the complete data outcome vector, which may not be fully observed.

• Partition Yi = (Y
(o)
i ,Y

(m)
i ), where Y

(o)
i denotes the observed data and Y

(m)
i the missing data.

• Let Ri = (Ri1, . . . , Rin)
T index missingness, i.e., Rij = 1 if Yij ∈ Y (o) (observed) and Rij = 0 if

Yij ∈ Y (m) (not observed).
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Missing Completely at Random

The outcomes are said to be missing completely at random (MCAR) if

Pr(Ri |Yi,Xi) = Pr(Ri |Xi); (1)

i.e., the missingness is conditionally independent of the outcome given the covariates.

Missing at Random

The outcomes are said to be missing at random (MAR) if

Pr(Ri |Yi,Xi) = Pr(Ri |Y (o)
i ,Xi); (2)

i.e., the missingness is conditionally independent of the unobserved outcomes, given the covariates and

observed outcomes.

Non-Ignorable

The missing data mechanism is non-ignorable (NI) or informative, if Ri depends on Y
(m)
i .
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General Comments

We will discuss missing data in more detail later. Some general comments:

• MAR is less restrictive than MCAR.

• For MCAR, both complete case analysis (using only units with complete observations) and all ob-

servation analysis are valid. They are not generally valid for MAR.

• For MAR, all observation analysis based on the likelihood is valid (no need to specify a model for

the missing mechanism).

• For NI, a model for missing mechanism (and perhaps external information) is needed.

5



PubH8452 Longitudinal Data Analysis - Fall 2014 Missing Data in Longitudinal Studies

Likelihood Model with Missing Data

• Let θ denote the parameter for the outcome Y and ψ the parameter for the missingness mechanism.

• For a likelihood-based analysis, the observed data likelihood is the joint density of (Y (o),R) which

can be written as:

f (y(o), r;θ,ψ) =

∫
f (y(o),y(m), r;θ,ψ)dy(m)

=

∫
f (y(o),y(m);θ)f (r |y(o),y(m);ψ)dy(m)

If R does not depend on Y (m) (MCAR or MAR), then

f (y(o), r;θ,ψ) = f (r |y(o);ψ)

∫
f (y(o),y(m);θ)dy(m)

= f (r |y(o);ψ)f (y(o);θ).
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• If ψ and θ are separable, i.e.,

Ω(θ,ψ) = Ω(θ)× Ω(ψ),

inference on θ can be based solely on f (y(o);θ).

• Note that for likelihood-based methods, we need correctly specify the model for Y (o), that is

f (y(o);θ).

• Implicitly we are assuming the marginal distribution of Y (o) is of interest, that is, for example, the

effect of the treatment if there is no dropout.

• There can be situations where the conditional distribution of Y (o) |R = 1 is of interest. For example,

the effect of a cancer treatment regime on the quality of life, given the patient survives.

• When the likelihood is the basis for inference, both MCAR and MAR are sometimes referred to

without distinction as ”ignorable”.
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Missing Data Patterns

We say a dropout occurs if whenever Yj is missing, so are Yk for all k ≥ j; otherwise we say the missing

values are intermittent.

• Intermittent missing can arise due to

– a known censoring mechanism, for example, all values below a known threshold are missing.

– a reason unrelated to the outcome, for example, a missed clinic appointment.

– The reason for the missing is often known because the subjects with missing values are still in the

study and hence the reason of missing values can be ascertained.

• Dropouts (attrition, lost of follow-up) are frequently lost to follow-up then we cannot be certain

that the dropout is or is not related to the observed or unobserved outcome.

– Dropout indicator: where did the dropout occur (next to last observed visit).

Di = 1 +

ni∑
j=1

Rij.

– Dropout is an example of monotone missing data, meaning that once Yik is lost, all observations

after time k are also lost. Some methods are designed specifically for monotone missing data.

– A trial protocol which specifies a set of circumstances under which a patient must be withdrawn

from the trial on the basis of their observed measurement history defines a random dropout

mechanism.

8



PubH8452 Longitudinal Data Analysis - Fall 2014 Missing Data in Longitudinal Studies

– when there is any kind of relationship between the measurement process and the dropout process,

the interpretation of apparently simple trends in the mean response over time can be problematic.

A simulated data example

∗ Dropouts occurred at random, according to the following logistic regression model

logit(pt) = −1− 2yt−1.

∗ Mean response was constant over time.

∗ Pair-wise correlation within a subject was ρ = 0.9 (Figure 13.1(a)) or ρ = 0 (Figure 13.1(b)).
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Figure 13.1 (a): ρ = 0.9
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Figure 13.1 (b): ρ = 0
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Simple Solutions and Their Limitations

Complete case analysis

Discard all incomplete sequences (i.e. use only subjects with complete sequence).

• Waste data if the dropout process is unrelated to the response process.

• When the two processes are related, this method may introduce bias. If we can make assumptions on

the relationship between the two processes, then using the incomplete data can improve the efficiency

of estimation.

• Only recommended when the scientific questions of interest are confined to the sub-population of

completers.
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Last observation carried forward (LOCF)

Imputing the last observed value for the subject to the rest of their sequence:

Yk = YDi−1 for all k ≥ Di.

• Routinely used in the pharmaceutical industry in the analysis of randomized trials.

• If patients are expected to improve over time, LOCF should result in a conservative estimate of

treatment benefits.

• In general, LOCF method is not recommended.
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Testing for MCAR

Test Setup

• Let tj, j = 1, . . . , n be intended times of measurement on each case. We observed yi = (yi1, . . . , yini)
T ,

ni ≤ n, where yij is observed at time tij.

• The null hypothesis is that the probability of a subject drops out at time tij is independent of

yi1, . . . , yi,j−1.

• Note that the covariates (e.g. treatment group) can make the dropout process appear to be informa-

tive (confounders), even if it were completely random within each treatment group. We should test

the above hypothesis using homogeneous subgroups (test within each treatment group).

• Method (Diggle, 1989):

1. Apply separate tests at each time point within each treatment group.

2. Analyze the resulting sample of p-values for departure from the uniform distribution on (0,1).
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Test Statistic

• For each k = 1, . . . , n− 1 (where a dropout could potentially occur), choose hk(y1, . . . , yk) to be the

“score” of the responses up to that time.

• Let Rk be the number of subjects with ni ≥ k, that is, the number of subjects still under observation

at time tk,

• Let rk be the number of subjects with ni = k, that is the number of subjects that are about to drop

out at time tk.

• Under H0, the scores hik = hk(yi1, . . . , yik) for the rk dropouts should be a random sample from the

complete set of Rk scores at time tk.
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Choice of hk( · )

The aim is to choose the function so that extreme values of the scores constitute evidence against

MCAR dropouts. An example is a weighted averages

hk(i) = hk(yi1, . . . , yik) =

k∑
j=1

wjyij, where

k∑
j=1

wj = 1

Choice of weights, wj, reflect analysts’ knowledge or judgment about the extent to which the past

measurement history influences dropouts.

1. Dropouts influenced immediately by an abnormally high/low measurement:

hk(i) = hk(yi1, . . . , yik) = yik

2. Dropouts influenced by a sustained sequence of higher/lower measurements

hk(i) = hk(yi1, . . . , yik) =
1

k

k∑
j=1

yij
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• Use the test statistic,

h̄k =
1

rk

∑
i:ni=k

hik,

which is the mean of the rk scores. Under the null hypothesis, the large sample distribution of h̄ik is

normal, with

mean: H̄k =
1

Rk

Rk∑
i=1

hik,

variance: S2
k(Rk − rk)/(rkRk), where

S2
k =

1

Rk − 1

Rk∑
i=1

(hik − H̄k)
2.
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• When some of the rk and Rk are small, the large sample distribution may be a poor approximation,

we may use the complete randomization distribution to do the

– exact test, or

– Monte Carlo test (permuting the missingness indicator and the observed values).
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• Repeat this for all k = 1, · · · , (n − 1) to get a set of p-values. The p-values for different k’s are

independent and have a uniform distribution under the null hypothesis.

– The implicit assumption that the separate p-values are mutually independent is valid because

once a subject drops out he never returns (that is the definition of dropout!).

– Informal graphical analyses: plotting the empirical distribution of the p-values for each treatment

group.

– Formal test of departure from uniformity: Kolmogorov-Smirnov statistics (Diggle, 1989).

∗ One-sided Kolmogorov-Smirnov statistic, D+ = sup{F̂ (p) − p}, where F̂ () is the empirical

cumulative distribution function of the p-values.

∗ Then use Barnard’s Monte Carlo testing idea to rank the observed value ofD+ among simulated

values based on discrete uniform distributions under the null hypothesis.

• A parametric variation is to use a logistic regression of the missingness indicator (i.e. missing or not)

on hik among subjects who have not dropped out.

If use pk to denote the probability that a subject will drop out at tk, we assume

log{pk/(1− pk) = α + βhk}.

Test the hypothesis that β = 0.
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Example: Dropouts in Milk Protein Data

• Milk was collected weekly from 79 cows and analyzed for its protein content.

• Three diets (completely randomized): (1) barley, (2) a mixture of barley and lupins, (3) lupins.

• Goal: to determine how diet affects the protein in milk.

• Staggered entry; time is measured in weeks since calving; Study was terminated at week 19 after the

earliest calving.

• 11 intermittent missing values.

• 38 “dropouts” at weeks 15, 16, 17, and 19.

• Is the observed rise in the mean response near the end of the experiment connected to the dropout

process?

• Test that dropouts are completely random using Monte Carlo test with score

hk(y1, . . . , yk) = yk
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Dropouts and completers by week and diet
Diet

Dropout time Barley Mixed Lupins

Week 15 6 7 7

Week 16 2 3 4

Week 17 2 1 1

Week 19 2 2 1

Completers 13 14 14

Total 25 27 27

p-values of tests for completely random dropouts by using hk(y1, . . . , yk) = yk
Diet

Dropout time Barley Mixed Lupins

Week 15 0.001 0.001 0.012

Week 16 0.016 0.001 0.011

Week 17 0.022 0.053 0.254

Week 19 0.032 0.133 0.206

• The p-values range from 0.001 to 0.254. The hypothesis of completely random dropouts can be

rejected firmly by even the “eye-ball” test.

• A Kolmogorov-Smirnov test gives p = 0.001.
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• We can also use the parametric way.

Let pgk denote the probability that a subject in the gth treatment group will drop out right after the

kth time point. We assume that

logit(pgk) = αgk + βgkhk,

where hk(y1, . . . , yk) = yk.

Table 13.2
Model for logit(pgk) Residual deviance df

1. αgk + βgkhk 111.97 210

2. αgk + βghk 116.33 219

3. αgk + βkhk 118.63 218

4. αgk + βhk 119.32 221

5. αgk 197.66 222

6. αg + αk + βhk 124.16 227

7. αg + βhk 131.28 230

8. α + βhk 139.04 232
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• Dropouts predominate in cows whose protein measurement in preceding weeks are below average.

• The parametric analysis allows a more detailed description of departures from the MCAR.

• Limitation! The alternative hypothesis (for both the non-parametric and parametric approaches)

includes MAR. Hence, rejection of MCAR does not determine the subsequent analysis strategy for

the data.
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Comments

• The methods to test the null hypothesis of MCAR are not very useful in practice where the alternative

is MAR.

• The greatest distinction is between the “ignorable” missing mechanisms and the non-ignorable or

informative missing. With informative missing/censoring, bias is typically unavoidable.

• To model non-ignorable missing, external information/assumptions are needed. Those assumptions

are not verifiable based on the available data.

• It is difficult to verify if the missingness is MAR versus NI.

• If the missing mechanism is MCAR, it is often easier to analyze, in particular, any likelihood-based

methods or the GEE method will work.

• The ordinary form of the GEE method assumes that the dropouts are MCAR, otherwise the consis-

tency is lost.
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Weighted Estimating Equations

• WEE or weighted GEE is an extension of GEE to deal with monotone missing data (i.e., dropouts).

• GEE based on complete data

S∗
β(β,α) =

m∑
i=1

(
∂µ∗

i

∂β

)T

Var(Y ∗
i )

−1(Y ∗
i − µ∗

i ) = 0

E[Y ∗
i − µ∗

i ] = 0 ⇒ S∗
β is an unbiased estimating function.

• GEE based on observed data

Sβ(β,α) =

m∑
i=1

(
∂µ∗

i

∂β

)T

Var(Y ∗
i )

−1∆i(Y
∗
i − µ∗

i )

where ∆i = diag(Ri1, . . . , Rin).

• If dropouts are completely at random, then ∆i is uncorrelated with Y ∗
i and

E[∆i(Y
∗
i − µ∗

i )] = 0

Sβ is an unbiased estimating function.
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• If dropouts are MAR instead, then

E[∆i(Y
∗
i − µ∗

i )] ̸= 0

Sβ is not unbiased which leads to inconsistent estimates of β.

• Define

pij ≡ Pr(Rij = 1 |Y ∗
i ),

the probability that subject i has not dropped out by time tj, given the subject’s response vector.

• To restore the unbiasedness of Sβ for the complete population we need to weight the contribution

of yij by the inverse of pij. This leads to the weighted estimation equation (WEE)

Sβ(β,α) =

m∑
i=1

(
∂µ∗

i

∂β

)T

Var(Y ∗
i )

−1Pi
−1∆i (Y

∗
i − µ∗

i )

where Pi = diag(pi1, . . . , pin). Now we have

E[p−1
ij Rij(y

∗
ij − µ∗

ij)] = 0.

• The extended GEE requires that the dropout probability (1− pij) can be consistently estimated.
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Therapy for Schizophrenia Trial

• A randomized trial of 523 patients in six treatment groups: placebo, haloperidol 20 mg and risperidone

at does levels 2, 6, 10 and 16 mg.

• The primary outcome is Positive and Negative Symptom Rating Scale (PANSS), a measure of psy-

chiatric disorder. (the smaller the better).

• The design requires the score be taken at weeks -1, 0, 1, 2, 4, 6, and 8.

• Only 253 patients have complete observations. The reasons for dropouts are

Inadequate response 183

Adverse experience 26

Uncooperative 25

Withdrew consent 19

Other reason 7

Abnormal lab result 4

Inter-current illness 3

Lost to follow-up 3
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• Numbers of dropouts and completes by treatment group

Treatment p h r2 r6 r10 r16 Total

Dropouts 61 51 51 34 39 34 270

Completers 27 36 36 52 48 54 253

Total 88 87 87 86 87 88 523

• “Inadequate response” is the most common reason for dropout and there is a higher proportion of

dropouts in the placebo group.
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Raw data – by treatment groups

> panssL <- reshape (panss[,1:8], direction = "long",

+ idvar = "id", timevar = "week", times = otime,

+ varying = names (panss)[2:8])

> panssL$week <- rep (otime, each = nrow (panss))

> panssL <- panssL[order (panssL$group, panssL$id, panssL$week),]

> xyplot (panss ~ week | group, group = id, type = "l",

+ data = panssL,

+ col = "gray50")
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Dropout rate – by treatment groups

> last.observed <- function (x, time = NULL) {

+ if (is.null (time)) {

+ time <- 1:length (x)

+ }

+ dropout <- sapply (1:length(x),

+ function (i, y) all(y[i:length(y)]), is.na (x))

+ ifelse (any (dropout), time[which(dropout)[1]-1], time[length(x)])

+ }

> panss$last.observed <- apply (panss[,2:8], 1, last.observed, otime)

> droptime <- table (panss$last.observed, panss$group)

> ndrop <- apply (droptime, 2, cumsum)

> ndrop <- 1 - ndrop[-7,] / ndrop[7]

>

> ndrop <- data.frame (group = rep (gnames, each = 6),

+ time = rep (otime[-1], length (gnames)),

+ instudy = as.vector (ndrop))

> xyplot (instudy ~ time, group = group, data = ndrop,

+ type = "o", col = 1, lty = 1:6, pch = 1:6,

+ ylab = "Proportion Still in Study",

+ xlab = "Time (Weeks)",

+ key = list (coner = c(0, 0), x = 0.2, y = 0.35,

+ lines = list (lty = 1:6), points = list (pch = 1:6),

+ text = list (gnames)))
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Observed mean response profile – by treatment groups

> panss <- read.table ("../data/panss.data")

> names (panss) <- c("group", paste ("panss", 0:6, sep = "."))

> gnames <- c("haloperidol", "placebo",

+ "risperidone10", "risperidone16", "risperidone2",

+ "risperidone6")

> panss$group <- factor (panss$group, labels = gnames)

> otime <- c(-1, 0, 1, 2, 4, 6, 8)

> temp <- by (panss[,2:8], panss$group, mean, na.rm = TRUE)

> group.m <- data.frame (group = rep (gnames, each = length (otime)),

+ time = rep (otime, length (gnames)),

+ mean = as.vector (do.call ("cbind", temp)))

> xyplot (mean ~ time, group = group, data = group.m,

+ type = "o", col = 1, lty = 1:6, pch = 1:6,

+ ylim = c(65, 97), ylab = "Observed Mean Response",

+ xlab = "Time (Weeks)",

+ key = list (coner = c(0, 0), x = 0.2, y = 0.35,

+ lines = list (lty = 1:6, pch = 1:6, type = "o"),

+ text = list (gnames)))
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Observed mean response profile– by different dropout times

> temp <- by (panss[,2:8], panss$last.observed, mean, na.rm = TRUE)

> temp <- do.call ("cbind", temp)

> temp[is.nan(temp)] <- NA

> obs.m <- data.frame (group = rep (otime, each = 7),

+ time = rep (otime, 7),

+ mean = as.vector (temp))

> xyplot (mean ~ time, group = group, data = obs.m,

+ type = "o", col = 1, lty = 1:7, pch = 1:7,

+ ylim = c(70, 110), ylab = "Observed Mean Response",

+ xlab = "Time (Weeks)",

+ key = list (coner = c(0, 0), x = 0.65, y = 0.9,

+ lines = list (lty = 1:7, pch = 1:7, type = "o"),

+ text = list (paste ("Week", otime)), divide = 2))
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Explore dropout mechanism

We model the probability of dropout (or not dropout) as a function of the measured response (a selection

model).

• We fit a logistic regression with the most recent measurement as an explanatory variable:

logit(pij) = β0 + β1yi,j−1. (3)

β̂1 = 0.031(p ≪ 0.05) confirms that high responders are likely to drop out. Therefore, we reject

completely random dropout (CRD).

• We consider two extensions of model (3):

logit(pij) = β0 + β1yi,j−1 + β2yi,j−2, (4)

and

logit(pij) = β0k + β1yi,j−1 + β2yi,j−2, (5)

where k = k(i) denotes the treatment for the ith subject.
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Both extensions yield a significant improvement.

logit(pij) Log-likelihood

β0 + β1yi,j−1 -20743.85

β0 + β1yi,j−1 + β2yi,j−2 -20728.51

β0k + β1yi,j−1 + β2yi,j−2 -20724.73

• Can we model the relationship between pij (or Rij, which is observed) and yij (the measurement

which would have been observed had the subject not dropped out)???

An example could be

logit(pij) = β0k + γyij + β1yi,j−1 + β2yi,j−2. (6)
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• When the dropout process is informative, the analyst is presented with a dilemma:

– doing nothing and accept biased estimates without knowing the extent of bias;

– trying to model the dropout process (more work), which involves making untestable assumptions,

to get still potentially biased estimates.

• Do sensitivity analysis for informative dropout models to assess

– perhaps some possible causes of informative dropout are more likely than others.

– how sensitive the results are to the different assumption of informative dropouts (and not modeling

dropouts).
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