Homework Assignment 1

(Due Wednesday, September 23, 2015 before class)
Please hand in a print-out of your answer and R code, and also email your R code to Zhiyuan (Jason) Xu xuxx0284@umn.edu. Note: John Verzani’s simpleR notes is available on https://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf

1. Problem 2.1-2.3. (p7) from John Verzani's simpleR notes. (9 points)
2. Problem 2.5. (p7-p8) from Jon John Verzani's simpleR notes. (5 points)
3. Problem 2.6. (p8) from John Verzani's simpleR notes. There is a typo in simpleR notes for this exercise. It should read: Note, we use X1 to denote the first element of x (which is 1) etc. (8 points)
4. Specify R code, using the function rep, to create the vector $(1,1,1,1,1,2,2,2,2$, $3,3,3,4,4,5$). (3 points)
5. Specify R code for pulling out the rows of the mat object (below) for which the fourth column is not missing and is less than 14. (4 points)
$>$ mat<-matrix(c(1:13, NA, 14:15), nrow=4)
6. Use the FAMuSS dataset (described in page 20 of Foulkes book)
(a) crease a new data set with more than 500 rows and 4 columns that does not contain any missing values (5 points)
(b) Use write.table to save this data frame to a file. Read it in back and check the structure of the data. [Hint: use str] (5 points)
(c) Use save to save this data frame to a file (.RData). load() the file. Check the structure of the data. (5 points)
7. Describe the following terms (6 points):
(a) allele frequency
(b) heterozygous
(c) genotype
(d) haplotype
(e) SNP marker
(f) gene expression
8. Create a $\mathrm{n} \times \mathrm{m}$ matrix of random numbers. Then determine how long it take to calculate the mean of each column using [Hint: use proc.time to track time]
(a) a for loop (4 points)
(b) apply (6 points)
9. (a) Simulate a string of 10,000 characters drawn uniformly and independently from the set $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$ [Hint: sample] (7 points)
(b) Create a frequency table of the string [Hint: table] (3 points)
(c) Write a function to create a contingency table of adjacent k-tuples. For example, with $\mathrm{k}=3$ and with the string "CAGACAAAAC", you would want to produce the following table: [Hint: paste(, collapse=""")] (20 points) $A A A$ AAC ACA AGA CAA CAG GAC $\begin{array}{llllllll}2 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
10. $\mathrm{x}!=1 \times 2 \times 3 \ldots \times \mathrm{x} ; 0!=1 . \mathrm{x}$ is an integer ≥ 0. Write your own function to perform the calculation. (10 points) [Do not use the function prod and factorial in R]
