Statistics for Human Genetics and Molecular Biology Lecture 1: Review Basic Terminology of Genetics

Dr. Yen-Yi Ho (yho@umn.edu)

Sep 09, 2015

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲国 ● ● ●

Logistics

Lectures	M W F
& Labs:	1:25 to 2:15
Office Hours :	Yen-Yi MW 2:30-3:30
	Cavan MW 2:30-3:30
	Zhiyuan (Jason) Xu Tue 3-4p in Mayo A446
Textbook:	Foulkes (2009): Applied Statistical Genetics with R
	Hahne, Huber, Gentleman, and Falcon (2008):
	Bioconductor Case Studies
	John Verzani's SimpleR notes
Website:	http://www.biostat.umn.edu/~cavanr/pubh7445.html

Goals for the Course

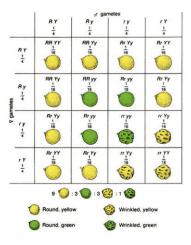
- Basic knowledge of R
- Basics of statistics for human genetics
- Basics of genetic data analyses using R/Bioconductor

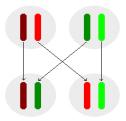
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Interpreting results and simple diagnoses

Objectives of Lecture 1

Review basic terminology of genetics


- Central dogma of molecular biology
- Chromosomes, genes, DNA, RNA, and proteins


(日)、(四)、(E)、(E)、(E)

- Gene expression
- Genetic variation
- Mutations

Technologies for Genome Analysis

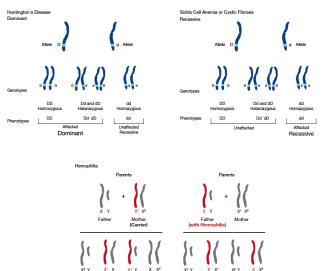
Mendelian Genetics (1866)

<ロ> (四) (四) (三) (三) (三)

Segregation of alleles in the production of sex cells

- 1. the principle of segregation
- 2. the principle of independent assortment

Mendelian Genetics Translates to Modern Genetics


- A parent contributes only a single chromosome within a pair to the offspring.
- A fixed location on a chromosome pair is called a locus, and only those loci coding (for proteins or functional RNA) are typically called genes.
- An allele is the state or type of genetic info at a locus on a single chromosome. Thus there are two alleles at each locus in an individual (for autosomes, and for sex chromosomes in females).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Example: A particular disease locus has two possible allele types in the population: d (the disease allele) and D (normal).
- Genotype: the joint (unordered) state of the two alleles. Could be dd, DD (called homozygous genotypes), or Dd (heterozygous genotype).
- Alleles that are common in the population are often called wild type while disease alleles are called mutant.
- Phenotype: an observed trait we care about, such as disease status, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Mendelian Genetics Translates to Modern Genetics

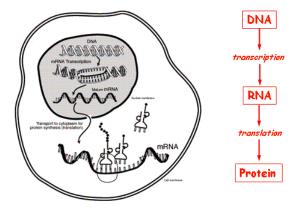
・ロト ・雪ト ・ヨト

3

Son

Son

Son

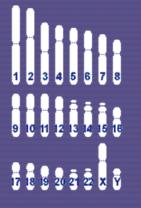

Hemophilia)

Daughter

Daughter

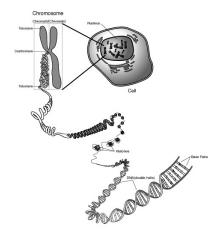
(Carrier) (with

Central Dogma of Biology: Classic View



Example: Human genome

Nucleus containing DNA


DNA is organized into chromosomes: 22 pairs of autosomes (1-22) and 1 pair of sex chromosomes (X,Y).

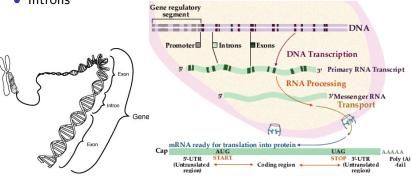
Genes, the functional units of heredity, are carried on chromosomes.

Plus the mitochondrial DNA

Base Pairs

IUPAC code	Base		
а	adenine		
с	cytosine		
g	guanine		
t (or u)	thymine (or uracil)		
r	a/g		
у	c/t		
s	g/c		
w	a/t		
k	g/t		
m	a/c		
b	c/g/t		
d	a/g/t		
h	a/c/t		
v	a/c/g		
n	any base		
./ -	gap		

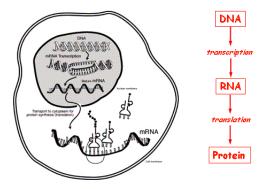
・ロト ・日ト ・日


∃⇒

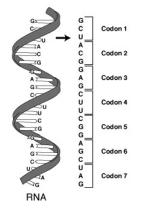
Humans have $\approx 3\times 10^9$ base pairs in their nuclear genome.

Gene

Gene: a functional and inheritable element in the genome, usually codes for a protein; human genome $\approx 20,000$ genes. The gene consists of three major structures:


- Regulatory segment
- Exons
- Introns

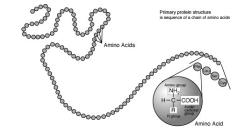
souce: http://www.nobelprize.org/educational/medicine/dna/a/replication/gene.html 👜 💦 😑 🖉 🦿


Transcription

Transcription is the process of making RNA from DNA.

Translation

Translation is the process of translating the sequence of nucleotide bases in DNA/RNA into a sequence of amino acids in a protein.

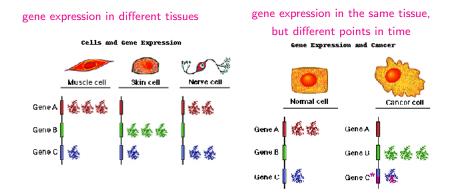


Ribonucleic acid

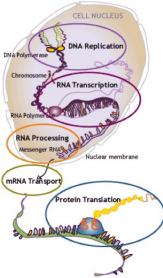
		U	С	A	G		
FIRST POSITION	U	phenyl– alanine	serine	tyrosine	cysteine	U C	
		leucine		stop	stop	A	
				stop	tryptophan	G	
	с	leucine	proline	histidine	arginine serine	U C	THIRD
				glutamine asparagine		A	DP
						G	ISC
	A	isoleucine	threonine			U C	POSITION
				lysine	arginine	А	ž
		 methionine 				G	
			alanine	aspartic acid glyci		U	
	G	valine			glycine	C	
	Ŭ			glutamic acid		A	
						G	

SECOND POSITION

* and start



▲□▶ ▲圖▶ ▲厘▶ ▲厘▶


æ

Gene Expression

Gene expression is a highly specific process. Only a small fraction of the genes are expressed, or turned "on," in any particular type of cell.

Putting it all together

DNA:

Info on chromosome is static, and essentially the same across cells within the individual

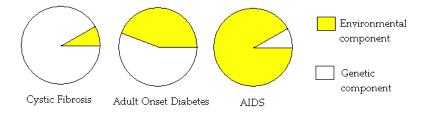
► mRNA:

Not as relevant as protein, but easier to quantify

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 Protein: Difficult to quantify globally, though very relevant

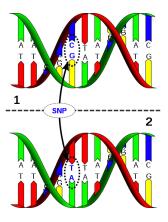
source:


http://www.nobelprize.org/educational/medicine/dna/index.html

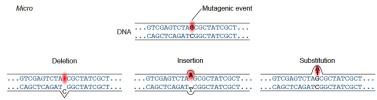
Source of Variation

Environment Vs. Gene

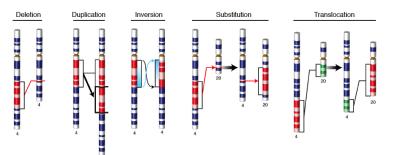
Any two individuals are 99.9% identical in their DNA

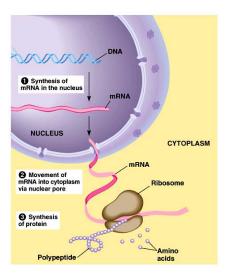


Genetic Variations (Polymorphisms)

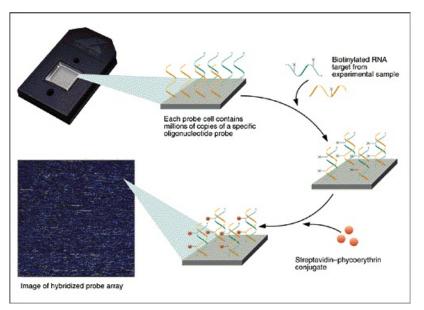

That 0.1 % is very important in defining our differences

- single nucleotide polymorphisms (SNPs, every 300 nucleotide on average)
- small-scale mutation, insertions, deletions
- copy number variations (AAGAAGAAGAAG)

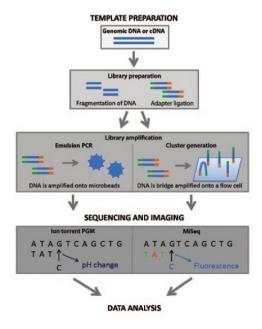



Mutations

Macro



Genome Analysis Technologies



- 1. DNA
 - Microarrays: SNP, Copy number variation (CNV), Methylation
 - DNA sequencing: SNP, Insertion, Deletion, Mutation, CNV, Methylation
- 2. mRNA
 - Microarrays
 - RNA sequencing
- 3. Protein
 - 2-D electrophoresis
 - Maldi-Tof mass spec

General Steps in Obtaining Gene Expression Data

General Steps in Next-Generation Sequencing

< = > = √Q()

24/25

Next Lecture

Review basic terminology of population genetics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Crossing Over
- DNA Recombination
- Genetic Markers
- Genetic Association Analysis
- Structures of Genetic Data