Statistics for Human Genetics and Molecular Biology
 Lecture 2: Introduction to Population Genetics

Dr. Yen-Yi Ho (yho@umn.edu)

Sep 11, 2015

Objectives of Lecture 2

- Review basic terminology of population genetics
- Crossing Over
- DNA Recombination
- Genetic Markers
- Genetic Association Analysis
- Genetic Data
- Introduction to R

Random Combinations of Gametes

Copysight O The MoCtraw-Hial Companias, Inc. Permisalion noquired Jor repesdaction or diaplay-

Crossing Over

DNA Recombination

Crossing-over and recombination during meiosis
Haplotype: a set of DNA variations, or polymorphisms, that tend to be inherited together.

Linkage

- 2 genes close together on the same chromosome pair do not assort independently at meiosis.
- A recombination frequency much less than 50% between 2 genes shows that they are linked.

Recombination Fraction

The recombination fraction (r) between two loci is the probability that a recombination occurs between the two loci.

Kosambi

$$
r=1 / 2 \times \frac{e^{d / 25}-1}{1+e^{d / 25}}
$$

Haldane
$r=1 / 2 \times\left(1-e^{-d / 50}\right)$
d: map units (cM)
$1 \mathrm{cM}=1 \% \approx 10^{6}$ base pairs.

Genetic Markers

A genetic marker is a DNA sequence with a known physical location on a chromosome.

Gene Association Analysis

SNP markers

Gene Association Analysis

552 Type I diabetes cases

395 non-Type I diabetes controls

Frequency of
a specific allele
10%
7% on a genetic marker

Genome-Wide Association Analysis (GWAS)

Confounding

- Associated with X
- Independently associated with Y
- Not in the causal pathway between X and Y
- ex: ice cream consumption and drowning death

Effect Modification

Effect of a predictor variable on the outcome depends on the level of another variable (interaction).

Genetic Data Structure

- Genetic information/Genotype
- Trait
- Individual-specific covariates

Genetic Data Used throughout this Course
FAMuSS Study: The Functional SNPs Associated with Muscle Size and Strength

- $\mathrm{n}=1397$
- 225 SNP markers
- individual-specific covariates: gender, age, race,
- traits: muscle strength, BMI, ...

	id	acdc_rs1501299	actn3_r577x	actn3_rs540874
1	FA-1801	CA	CC	GG
2	FA-1802	CA	CT	GA
3	FA-1803	CA	CT	GA
4	FA-1804	CC	CT	GA
5	FA-1805	CA	CC	GG

The Human Genome Diversity Project (HGDP)

- $\mathrm{n}=1064$
- 4 SNP markers on AKT1 gene
- individual-specific covariates: gender, population, geographical area, ...

	ID	Gender	Population	Geographic.area	AKT1.C0756A
1	HGDP00980	F	Biaka Pygmies	Central Africa	CA
2	HGDP01406	M	Bantu	Central Africa	CA
3	HGDP01266	M	Mozabite	Northern Africa	AA
4	HGDP01006	F	Karitiana	South America	AA
5	HGDP01220	M	Daur	China	AA

The Virco Data

- $\mathrm{n}=1066$ viral isolates
- 99 sequence information within the protease region of the viral genome
- drug-specific fold-resistance

	SeqID	APV.Fold	IDV.Fold	P10	P11	P12
1	3852	7.50	14.20	I	-	-
2	3865	3.00	13.50	I	-	-
3	7430	3.30	16.70	I	-	-
4	7459		3.00	I	-	-
5	7460		7.00	-	-	-

The ALL Dataset

- Microarrays data with 12,625 gene expression probes (features) from 128 individuals with acute lymphoblastic leukemia (ALL).
- individual specific covariates: gender, age, tumor type and stage, translocation mutation

	01005	01010	03002	04006	04007
1000_at	7.60	7.48	7.57	7.38	7.91
1001_at	5.05	4.93	4.80	4.92	4.84
1002_f_at	3.90	4.21	3.89	4.21	3.42
1003_s_at	5.90	6.17	5.86	6.12	5.69
1004_at	5.93	5.91	5.89	6.17	5.62

R Topics Outline

- Get Started
- R as a calculator
- Vectors
- Matrices, Arrays, Factors, List, Data Frame
- Import/Export Data
- R Graphics
- Random number generating
- Writing R function
- for loops
- rep, seq, which, match

R: Pros and Cons

Pros

+ Free
+ Available for all major platforms
+ Powerful graphics
+ Comprehensive
+ Well-designed programming language (object-oriented)
+ Unlimited extensibility
+ Widely used by statisticians
+ Increasingly used for genomic analyses (Bioconductor)

Cons

- No dedicated support
- Complex Syntax
- Not point-and-click
- No warranty

Get Started

- Installation
- google $\mathrm{R} \rightarrow$ The R project for Statistical Computing
- R64 bits (large datasets) vs. R32 bits
- Getting help with R
- At the command prompt, type, for example ?read.table or help(read.table)
- At the command prompt, type, for example, help.search(" read") or apropos(" read").
- Within R, use the menu bar: Help: R help.
- Quititng R. q()
- How to save work space

R Resources

John Verzani's SimpleR notes
R Reference Card
CRAN (Document/Manuals)
Note: To run some of the example in John Verzani's notes, run:
> install.packages("UsingR")
$>$ library(UsingR)

R as a calculator

$>3+2$
[1]5
$>7 / 2$
[1]3.5
$>3 * 5$
[1]15
>2 - 3
[1]8
$>7 \% \% 3$ \#\# answer 1, modulo reduction
$>\log (1: 4)$
$>\log 2(1: 4)$
$>\log (1: 4$, base $=3)$
$>\exp (1)$
[1]2.718282
$>$ abs (-3)
$>\operatorname{sqrt}(3)$
$>\sin (0.5)$

Vectors

Vectors contain elements of just 1 type, either numeric, logical, or character.

- Accessing elements in a vector: []. (Very important)
- By logical conditions.

(θ)	(1)	(2)	(3)	(4)

$>x<-3$
$>\mathrm{x} \#$ print x
$>\mathrm{x}<-4$
$>\mathrm{x}$
\#\#\# Creating simple vectors
$>\mathrm{x}<-\mathrm{c}(1,3.5,-28.4,10)$ \#numerical vector
$>y<-c(" c a t ", " d o g ", " m o u s e ", " m o n k e y ") ~ \# c h a r a c t e r$
$>z<-c(T R U E, T R U E, T R U E, F A L S E, F A L S E)$ \#logical vector
$>x<-1: 10$
$>\operatorname{seq}(1,10, \mathrm{by}=1)$
$>\operatorname{seq}(3,9$, by=3)
$>\operatorname{rep}(2,10)$
$>\log (\operatorname{seq}(1,2, \mathrm{by}=0.1))$
$>x<-c(1,5,10, N A, 15)$
$>\operatorname{sum}(x)$
$>\operatorname{sum}(\mathrm{x}, \mathrm{na} . \mathrm{rm}=$ TRUE)
$>\operatorname{prod}(x, n a . r m=T R U E)$
$>\operatorname{mean}(x$, na. $\mathrm{rm}=\mathrm{TRUE})$

Accessing Elements in a Vector

$>y<-c(8,32,15,-7,2,19)$
$>$ length (y)
$>y[3: 5]$ \#\#position in vector as positive integer
$>y[-c(1,5,6)]$ \#\# exclude: use negative integers
$>y<15$
$>y[y<15]$
$>$ which $(y==32)$
$>\mathrm{x}<-1: 10$
$>\operatorname{match}(\mathrm{y}, \mathrm{x})$
$>$ colors <- c('red", '‘blue", '‘pink", '‘yellow")
$>$ which(colors == ''yellow")
$>x<-\mathrm{c}(1,5,10, \mathrm{NA}, 15)$
$>$ which(is.na(x))
$>$ which(!is.na(x))

Factors

Factors: vectors with levels. Handy for regression modeling.

Example:
$>$ colors <- c(1, 1, 2, 3)
$>$ colors <-
factor(colors, label=c("red","green","blue"))
$>$ table(colors)
colors
red green blue
21

Matrices

- Dimension: Row by column.
- Accessing elements in a matrix: [].

$(0,0)$				$(0,4)$
$(1,0)$				
$(3,0)$				$(3,4)$

$>$ help(cbind)
$>y<-c(8,32,15,-7,2,19)$
$>\mathrm{x}<-1: 6$
$>$ mat<- cbind(x, y)
$>$ help(rbind)
$>\operatorname{dim}(m a t)$ \#\# check dimension
$>$ ncol(mat) \#\# the number of columns of a matrix
$>$ nrow (mat) \#\# the number of rows of a matrix
$>$ mat $[2,3]$ \# the value in the 2nd row and the 3rd column
$>$ mat [1:3,] \#\# the first three row of mat
$>\operatorname{mat}[, 2]$ \#\# the 2nd column of mat
$>$ mat $[-1$,$] \#\# exclude the first row$
$>$ newmat<-matrix(1:9, nrow=3) \#\# create new matrix
$>$ newmat
$>$ m<-matrix(1:9, nrow=3, byrow=T) \#\# fill row first
$>$ colnames(m) <- c("a", "b", "c") \#\# label column name
$>$ rownames(m) <- c("r1", "r2", "r3")
$>$ vect<-as.vector(newmat)

Arrays

- Dimension: Row by column by height.

$>$ myarray<-array (1:64, dim=c $(4,4,4))$
$>$ myarray
$>$ myarray $[1,2,3]$

Data Frames

Data Frame: like matrices, but each column can be a different data type.
$>\operatorname{str}$ (mydata)
'data.frame': 10 obs. of 3 variables:
\$ y : num 24.226 .623 .923 .623 .6 ...
\$ x1: num 3.022 .433 .353 .863 .7
\$ x2: Factor w/ 2 levels " F^{\prime}," ${ }^{\prime \prime}$ ": 2222221111

Lists

List: a bag contains different things (vectors, matrices, data frames,)

- Accessing components in a list: [[]].
- Accessing to elements within components.

Lists

> x <- list(one=c(18:36),two=c("AK","AL","AZ"), three $=c(T, T, F, T)$, four=matrix $(1: 12,3,4)$)
$>\operatorname{str}(\mathrm{x})$
List of 4
\$ one : int [1:19] $1819202122232425 \quad 26 \quad 27$
\$ two : chr [1:3] "AK" "AL" "AZ"
\$ three: logi [1:4] TRUE TRUE FALSE TRUE
\$ four : int $[1: 3,1: 4] 12345678910 \ldots$
$>\mathrm{x}[[1]]$
$>\mathrm{x}$ \$one
$>\mathrm{y}<-$ unlist(x)

For loops

```
for(i in 1:100){
    d <- Sys.time()
    print(paste("Now is", d, sep=" "))
    print(i*i)
```


Next Lecture

- R
- Get Started
- R as a calculator
- Vectors
- Matrices, Arrays, Factors, List, Data Frame
- Import/Export Data
- for loops
- R Graphics
- Random number generating
- Writing R function
- rep, seq, which, match

