Statistics for Human Genetics and Molecular Biology Lecture 5: Some Statistical Tools

Dr. Yen-Yi Ho (yho@umn.edu)

Sep 21, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Objectives of Lecture 5

Correlation

- Linear Regression
- Multiple Linear Regression
- Interaction
- Likelihood Ratio Test for Model Seletion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Logistic Regression
- Generalized Linear Models

Choose the Correct Statistical Test

	Independent		Variable
		Categorical	Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^2 , Fisher (B)	GLM (D)

- Difference in gene expression in patients with mutations (yes/no)
- Determine the association between disease Status (yes/no) and genotype (AA, Aa, aa)
- Predict father's height from daughter's height
- Determine the relationship between smoking status (yes/no) and lung cancer (yes/no)

Choose the Correct Statistical Test

		Independent	Variable
		Categorical	Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^2 , Fisher (B)	GLM (D)

- Difference in gene expression in patients with mutations (yes/no)
- Determine the association between disease Status (yes/no) and genotype (AA, Aa, aa)
- Predict father's height from daughter's height
- Determine the relationship between smoking status (yes/no) and lung cancer (yes/no)

Gene Expression Example

```
# source( "http://www.bioconductor.org/biocLite.R)
# biocLite( "BioCaseStudies)
# biocLite( "Biobase" )
# biocLite( "annotate" )
# biocLite("hgu95av2.db)
>library(''Biobase")
>library(''annotate")
>library(''hgu95av2.db")
>library(ALL)
>data<-exprs(ALL_bcrneg)</pre>
>probename<-rownames(data)
>genename<-mget(probename, hgu95av2SYMBOL)
>genename[1:5]
>plot(data[4,], data[5,], pch=16)
```

Correlation

Correlation between 1003_s_at and 1004_at

Probe ("1003_s_at" and "1004_at") are mapped to the same gene (*CXCR5*), are their expression measures correlated?

Pearson Correlation

Consider n pairs of data: $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_n, y_n)$

$$r = \frac{\sum_{i} (X_{i} - \overline{X})(Y_{i} - \overline{Y})}{s_{x}s_{y}}$$

 s_x , s_y : SD of x and y. This is sometimes also called the correlation coefficient; $-1 \le r \le 1$.

- r=0 : no correlation
- r > 0: positive correlation; Y increases with increasing X.

- r<0: negative correlation.</p>
- |r| > 0.7, strong correlation
- 0.3 < |r| < 0.7, moderate correlation
- |r| < 0.3, weak correlation

Gene Expression Example

Image: A mathematical states and a mathem

э

> cor(data[4,], data[5,])[1] 0.7499144

Example 2: Fathers' and daughters' heights

(日) (同) (日) (日)

-

Reference: Pearson and Lee (1906) Biometrika 2:357-462 1376 pairs

Fathers' and daughters' heights

Reference: Pearson and Lee (1906) Biometrika 2:357-462 1376 pairs

Linear Regression

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i, \qquad \epsilon_i \sim N(0, \sigma^2)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

11/30

The regression model

Let X be the predictor and Y be the response. Assume we have n observations $(x_1, y_1), \ldots, (x_n, y_n)$ from X and Y. THe simple linear regression model is

$$\begin{array}{rcl} Y_i &=& \beta_0 + \beta_1 X_i + \epsilon_i, \qquad \epsilon_i \sim \mathcal{N}(0, \sigma^2), \\ & \text{or} \\ \hat{Y} &=& \beta_0 + \beta_1 X. \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

 \hat{Y} is the fitted value of Y.

 \rightarrow How do we decide the values β_0 , β_1 , and σ^2 ?

Residuals

$$\epsilon_i = y_i - (\beta_0 + \beta_1 x_i)$$

・ロト ・個ト ・モト ・モト

æ

13/30

Regression Coefficients

$$\hat{Y} = \beta_0 + \beta_1 X$$

β₁: the amount of change in y that occurs with on unit change in x.

• • • • • • • • • • • •

∃ ⊳

• β_0 : the fitted value of y when x=0.

Fitting Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X + \epsilon_i$$

Data:

Obs	У	х
1	0.72	0.43
2	0.65	1.51
3	0.81	-0.63
4	-0.06	-0.73
5	1.39	0.27
6	-0.04	0.13
7	-0.09	0.65
8	-0.31	-0.83
9	0.85	-0.54
10	0.35	0.04

fit<-lm(y \sim x) $_\cdots$

Gene Expression Example

$$\hat{Y} = \beta_0 + \beta_1 X_1$$

	Estimate	Std.	Error	t value	$\Pr(> t)$
(Intercept)	1.6740		0.4348	3.85	0.0002
''1004_at"	0.7416		0.0746	9.95	0.0000

16/30

Matrix Multiplication

$$x = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \times \begin{pmatrix} 9 \\ 8 \\ 7 \end{pmatrix}$$
$$1 \times 9 + 2 \times 8 + 3 \times 7 = 46$$
$$4 \times 9 + 5 \times 8 + 6 \times 7 = 118$$
$$x = \begin{pmatrix} 46 \\ 118 \end{pmatrix}$$

Dimension: $(2 \times 3) \times (3 \times 1) = (2 \times 1)$

Fitting Linear Regression Model

$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

Design Matrix

More than one predictor

Data

	Ζ	<i>x</i> ₁	У		
	0	0.37	0.72	1	
	0	0.19	0.65	2	
$Y_i = \beta_0 + \beta_1 X_1$	0	0.11	0.81	3	
other words (or	0	-0.44	-0.06	4	
other words (or,	0	-0.31	1.39	5	
	1	-0.39	-0.04	6	
$\int \beta_0 + \beta_1 X_1$	1	-0.20	-0.09	7	
$\left(\left(\beta_0 + \beta_2 \right) + \beta \right)$	1	-0.23	-0.31	8	
	1	-0.01	0.85	9	
	1	-0.45	0.35	10	

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 Z + \epsilon_i$$

In other words (or, equations):

$$Y_i = \begin{cases} \beta_0 + \beta_1 X_1 + \epsilon_i, & \text{if } Z = 0\\ (\beta_0 + \beta_2) + \beta_1 X_1 + \epsilon_i, & \text{if } Z = 1 \end{cases}$$

◆□> <圖> < E> < E> < E < のへで</p>

Multiple Linear Regression

 \rightarrow Assuming the same slope for both Z = 0 and Z = 1.

Multiple Linear Regression: Interaction

When slopes are different in Z = 0 vs. Z = 1,

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 Z + \beta_3 X_1 \times Z + \epsilon_i$$

Gene Expression Example

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 Z + \beta_3 X_1 \times Z + \epsilon_i$$

Y: measure of "1003_s_at" probe X: measure of "1004_at" probe

Z: molecular type (BCR/ABL=0 or NEG=1)

Intercept	<i>X</i> ₁	Ζ	$X_1 \times Z$
1	5.93	0	0.00
1	5.91	1	5.91
1	5.89	0	0.00
1	5.62	1	5.62
1	5.92	1	5.92

Table: Design Matrix

<ロ> (四) (四) (三) (三) (三)

. . .

Gene Expression Example

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 Z + \beta_3 X_1 \times Z + \epsilon_i$$

```
Y: measure of "1003_s_at" probe
X: measure of "1004_at" probe
Z: molecular type (BCR/ABL=1 or NEG=0)
> int <- as.numeric(ALL_bcrneg$mol.biol) * data[5,]
> fit1<- lm(data[4,] ~ data[5,] +
ALL_bcrneg$mol.biol + int)
> fitout <- summary(fit1)</pre>
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	1.5971	0.6249	2.56	0.0126
"1004_at"	0.7815	0.2398	3.26	0.0017
mol.biolNEG	0.1388	0.8821	0.16	0.8754
int	-0.0257	0.1513	-0.17	0.8656

Table: Linear regression model with interaction term

Gene Expression Example: Simplified model

 $Y_i = \beta_0 + \beta_1 X_1 + \epsilon_i$

linear association between 1003_s_at and 1004_at

>fit2<-lm(data[4,] ~ data[5,])
>aa<-summary(fit2)</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
(Intercept)	1.6740	0.4348	3.85	0.0002
"1004_at"	0.7416	0.0746	9.95	0.0000

Model Selection: Likelihood Ratio Test

$$Y_i = \beta_0 + \beta_1 X_1 + \beta_2 Z + \beta_3 X_1 \times Z + \epsilon_i$$

or
$$Y_i = \beta_0 + \beta_1 X_1 + \epsilon_i$$

> annova(fit1, fit2)

	Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
1	75	2.31				
2	77	2.31	-2	-0.00	0.05	0.9491

 $p\ value > 0.05\ suggests$ that both models fit data equally well. We choose the simple over the complicated model.

For Binary Response

Y = 0 or 1, a binary response

$$\hat{Y} = \beta_0 + \beta_1 X ? Y=1.2 ?$$

$$Pr(Y=1) = \beta_0 + \beta_1 X ? Pr(Y=1) = 1.1 ?$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The problem:

 \rightarrow the right hand side, $\beta_0 + \beta_1 X \in (-\infty, \infty)$

Logistic Regression

$$\log \left[\frac{\Pr(Y=1)}{1-\Pr(Y=1)}\right] = \beta_0 + \beta_1 X$$

or
$$\log \left[\Pr(Y=1)\right] = \beta_0 + \beta_1 X$$

Figure: The logistic function

◆□> ◆□> ◆注> ◆注> □注□

Interpretation of β 's

$$\log\left[\frac{\Pr(Y=1)}{1-\Pr(Y=1)}\right] = \beta_0 + \beta_1 X$$

 β_0 : log odds when X=0 β_1 : change in log odds with 1 unit increase in X. For example:

X=4, odds = $e^{\beta_0+\beta_1\times 4}$ X=3, odds = $e^{\beta_0+\beta_1\times 3}$

$$OR_{rac{X=4}{X=3}} = rac{e^{eta_0+eta_1 imes 4}}{e^{eta_0+eta_1 imes 3}} = e^{eta_1}$$

With 1 unit increase in X, odds of Y=1 increases e^{β_1} times.

FAMuSS Example

	Genotype	
BMI>25	AA	(GA and GG)
1	30	314
0	30	626
	60	940

$$\mathsf{OR}_{rac{AA}{other}} = rac{ad}{bc} = 1.99 = e^{0.69}$$

>geno<-ifelse(Geno=="AA", 1, 0)
>fit4<-glm(trait
$$\sim$$
 geno, data=fms,
family=binomial(link=logit))

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.69	0.0692	-9.98	0.0000
geno	0.69	0.2673	2.58	0.0098