Statistics for Human Genetics and Molecular Biology Lecture 5: Some Statistical Tools

Dr. Yen-Yi Ho (yho@umn.edu)

Sep 21, 2015

Objectives of Lecture 5

- Correlation
- Linear Regression
- Multiple Linear Regression
- Interaction
- Likelihood Ratio Test for Model Seletion
- Logistic Regression
- Generalized Linear Models

Choose the Correct Statistical Test

		Independent	Variable
		Categorical	Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^{2}, Fisher (B)	GLM (D)

- Difference in gene expression in patients with mutations (yes/no)
- Determine the association between disease Status (yes/no) and genotype (AA, Aa, aa)
- Predict father's height from daughter's height
- Determine the relationship between smoking status (yes/no) and lung cancer (yes/no)

Choose the Correct Statistical Test

		Independent Categorical	Variable Continuous
Outcome	Continuous	T-Test, ANOVA (A)	Regression (C)
Variable	Categorical	χ^{2}, Fisher (B)	GLM (D)

- Difference in gene expression in patients with mutations (yes/no)
- Determine the association between disease Status (yes/no) and genotype (AA, Aa, aa)
- Predict father's height from daughter's height
- Determine the relationship between smoking status (yes/no) and lung cancer (yes/no)

Gene Expression Example

\# source("http://www.bioconductor.org/biocLite.R)
\# biocLite("BioCaseStudies)
\# biocLite("Biobase")
\# biocLite("annotate")
\# biocLite("hgu95av2.db)
>library('‘Biobase")
>library('‘annotate")
>library('‘hgu95av2.db")
$>$ library (ALL)
>data<-exprs(ALL_bcrneg)
$>$ probename<-rownames(data)
$>$ genename<-mget(probename, hgu95av2SYMBOL)
$>$ genename[1:5]
$>$ plot(data[4,], data[5,], pch=16)

Correlation

Correlation between 1003_s_at and 1004_at

Probe ("1003_s_at" and "1004_at") are mapped to the same gene (CXCR5), are their expression measures correlated?

Pearson Correlation

Consider n pairs of data: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots,\left(x_{n}, y_{n}\right)$

$$
r=\frac{\sum_{i}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{s_{x} s_{y}}
$$

s_{x}, s_{y} : SD of x and y.
This is sometimes also called the correlation coefficient;
$-1 \leq r \leq 1$.

- $\mathrm{r}=0$: no correlation
- $r>0$: positive correlation; Y increases with increasing X .
- $\mathrm{r}<0$: negative correlation.
- $|r|>0.7$, strong correlation
- $0.3<|r|<0.7$, moderate correlation
- $|r|<0.3$, weak correlation

Gene Expression Example

Correlation between 1003_s_at and 1004_at

$>\operatorname{cor}(\operatorname{data}[4],$, data [5,] $)$
[1] 0.7499144

Example 2: Fathers' and daughters' heights

Daughters' heights

Reference: Pearson and Lee (1906) Biometrika 2:357-462 1376 pairs

Fathers' and daughters' heights

Reference: Pearson and Lee (1906) Biometrika 2:357-462 1376 pairs

Linear Regression

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

The regression model

Let X be the predictor and Y be the response. Assume we have n observations $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ from X and Y . THe simple linear regression model is

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim N\left(0, \sigma^{2}\right) \\
& \text { or } \\
\hat{Y} & =\beta_{0}+\beta_{1} X .
\end{aligned}
$$

\hat{Y} is the fitted value of Y.
\rightarrow How do we decide the values β_{0}, β_{1}, and σ^{2} ?

Residuals

$$
\epsilon_{i}=y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)
$$

Regression Coefficients

$$
\hat{Y}=\beta_{0}+\beta_{1} X
$$

- β_{1} : the amount of change in y that occurs with on unit change in x.
- β_{0} : the fitted value of y when $x=0$.

Fitting Linear Regression Model

$$
Y_{i}=\beta_{0}+\beta_{1} X+\epsilon_{i}
$$

Data:

Obs	y	x
1	0.72	0.43
2	0.65	1.51
3	0.81	-0.63
4	-0.06	-0.73
5	1.39	0.27
6	-0.04	0.13
7	-0.09	0.65
8	-0.31	-0.83
9	0.85	-0.54
10	0.35	0.04

fit<-lm $(y \sim x)$

Gene Expression Example

$$
\hat{\gamma}=\beta_{0}+\beta_{1} X_{1}
$$

$H_{0}: \beta_{i}=0 \quad$ vs $\quad H_{a}: \beta_{i} \neq 0$

$$
t=\frac{\hat{\beta}_{i}}{S E\left(\hat{\beta}_{i}\right)}
$$

>fit2<-lm(data[4,] ~ data[5,])
$>\mathrm{aa}<-$ summary (fit2)

	Estimate	Std.	Error	t value
(Intercept) $(>\|\mathrm{t}\|)$				
''1004_at"	1.6740	0.7416	0.0746	3.85

Matrix Multiplication

$$
\begin{array}{r}
x=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \times\left(\begin{array}{l}
9 \\
8 \\
7
\end{array}\right) \\
1 \times 9+2 \times 8+3 \times 7=46 \\
4 \times 9+5 \times 8+6 \times 7=118
\end{array}
$$

$$
x=\binom{46}{118}
$$

Dimension: $(2 \times 3) \times(3 \times 1)=(2 \times 1)$

Fitting Linear Regression Model

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\epsilon_{i} \\
{\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{c}
\beta_{0}+\beta_{1} X_{1} \\
\beta_{0}+\beta_{1} X_{2} \\
\vdots \\
\beta_{0}+\beta_{1} X_{n}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]} \\
{\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right]\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]}
\end{gathered}
$$

Design Matrix

$$
Y=X \beta+\epsilon
$$

$$
\left.\begin{array}{l}
{\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{c}
\beta_{0}+\beta_{1} X_{1} \\
\beta_{0}+\beta_{1} X_{2} \\
\vdots \\
\beta_{0}+\beta_{1} X_{n}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right]} \\
{\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right]=\left(\left[\begin{array}{cc}
1 & X_{1} \\
1 & X_{2} \\
\vdots & \vdots \\
1 & X_{n}
\end{array}\right]-\beta_{0}\right.} \\
\beta_{1}
\end{array}\right]+\left[\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\vdots \\
\epsilon_{n}
\end{array}\right] .
$$

Design Matrix

More than one predictor

Data

	y	x_{1}	z	
1	0.72	0.37	0	
2	0.65	0.19	0	
3	0.81	0.11	0	$Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\epsilon_{i}$
4	-0.06	-0.44	0	In other words (or, equations):
5	1.39	-0.31	0	In other words (or, equations)
6	-0.04	-0.39	1	
7	-0.09	-0.20	1	$Y_{i}= \begin{cases}\beta_{0}+\beta_{1} X_{1}+\epsilon_{i}, & \text { if } Z=0\end{cases}$
8	-0.31	-0.23	1	$V_{i}=\left\{\begin{array}{l} \\ 0\end{array} \beta_{2}\right)+\beta_{1} X_{1}+\epsilon_{i}$, if $Z=1$
9	0.85	-0.01	1	
10	0.35	-0.45	1	

Multiple Linear Regression

$$
\begin{aligned}
& Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\epsilon_{i} \\
& \text { Interaction X1X2 } \\
& Y_{i}=\left\{\begin{array}{cc}
\beta_{0}+\beta_{1} X_{1}+\epsilon_{i}, & \text { if } Z=0 \\
\left(\beta_{0}+\beta_{2}\right)+\beta_{1} X_{1}+\epsilon_{i}, & \text { if } Z=1
\end{array}\right.
\end{aligned}
$$

\rightarrow Assuming the same slope for both $Z=0$ and $Z=1$.

Multiple Linear Regression: Interaction

When slopes are different in $Z=0$ vs. $Z=1$,

$$
\begin{gathered}
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\beta_{3} X_{1} \times Z+\epsilon_{i} \\
\end{gathered}
$$

Gene Expression Example

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\beta_{3} X_{1} \times Z+\epsilon_{i}
$$

Y: measure of "1003_s_at" probe
X: measure of "1004_at" probe
Z : molecular type ($\mathrm{BCR} / \mathrm{ABL}=0$ or $\mathrm{NEG}=1$)

Intercept	X_{1}	Z	$X_{1} \times Z$
1	5.93	0	0.00
1	5.91	1	5.91
1	5.89	0	0.00
1	5.62	1	5.62
1	5.92	1	5.92
\ldots			
Table: Design Matrix			

Gene Expression Example

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\beta_{3} X_{1} \times Z+\epsilon_{i}
$$

Y: measure of "1003_s_at" probe
X: measure of "1004_at" probe
Z: molecular type ($\mathrm{BCR} / \mathrm{ABL}=1$ or $\mathrm{NEG}=0$)
> int <- as.numeric(ALL_bcrneg\$mol.biol) * data[5,]
$>$ fit1<- lm(data[4,] ~ data[5,] +
ALL_bcrneg\$mol.biol + int)
> fitout <- summary(fit1)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	1.5971	0.6249	2.56	0.0126
"1004_at"	0.7815	0.2398	3.26	0.0017
mol.bioINEG	0.1388	0.8821	0.16	0.8754
int	-0.0257	0.1513	-0.17	0.8656

Table: Linear regression model with interaction term

Gene Expression Example: Simplified model

$$
Y_{i}=\beta_{0}+\beta_{1} X_{1}+\epsilon_{i}
$$

$>$ fit2<-lm(data[4,] $\sim \operatorname{data}[5]$,
$>$ aa<-summary (fit2)

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	1.6740	0.4348	3.85	0.0002
"1004_at"	0.7416	0.0746	9.95	0.0000

Model Selection: Likelihood Ratio Test

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} X_{1}+\beta_{2} Z+\beta_{3} X_{1} \times Z+\epsilon_{i} \\
& \text { or } \\
Y_{i} & =\beta_{0}+\beta_{1} X_{1}+\epsilon_{i}
\end{aligned}
$$

> annova(fit1, fit2)

	Res.Df	RSS	Df	Sum of Sq	F	$\operatorname{Pr}(>F)$
1	75	2.31				
2	77	2.31	-2	-0.00	0.05	0.9491

p value >0.05 suggests that both models fit data equally well. We choose the simple over the complicated model.

For Binary Response

$\mathrm{Y}=0$ or 1 , a binary response

$$
\begin{aligned}
\hat{Y} & =\beta_{0}+\beta_{1} X \quad
\end{aligned} \quad ? \mathrm{Y}=1.2 ?
$$

The problem:
\rightarrow the right hand side, $\beta_{0}+\beta_{1} X \in(-\infty, \infty)$

Logistic Regression

$$
\begin{aligned}
\log \left[\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}\right] & =\beta_{0}+\beta_{1} X \\
& \text { or } \\
\operatorname{logit}[\operatorname{Pr}(Y=1)] & =\beta_{0}+\beta_{1} X
\end{aligned}
$$

$\operatorname{logit}(z)=\log \frac{z}{1-z}$

Figure: The logistic function

Interpretation of β 's

$$
\log \left[\frac{\operatorname{Pr}(Y=1)}{1-\operatorname{Pr}(Y=1)}\right]=\beta_{0}+\beta_{1} X
$$

$\beta_{0}: \log$ odds when $X=0$
β_{1} : change in log odds with 1 unit increase in X.
For example:
$X=4$, odds $=e^{\beta_{0}+\beta_{1} \times 4}$
$X=3$, odds $=e^{\beta_{0}+\beta_{1} \times 3}$

$$
O R_{X=4}^{X=3}=\frac{e^{\beta_{0}+\beta_{1} \times 4}}{e^{\beta_{0}+\beta_{1} \times 3}}=e^{\beta_{1}}
$$

With 1 unit increase in X, odds of $Y=1$ increases $e^{\beta_{1}}$ times.

FAMuSS Example

Genotype $\mathrm{BMI}>25$		
1	30	$(\mathrm{GA}$ and GG)
0	30	626
	60	940
$\mathrm{OR}_{\frac{A A}{\text { other }}}=\frac{a d}{b c}=1.99=e^{0.69}$		

$>$ geno<-ifelse(Geno=="AA", 1, 0)
$>f i t 4<-$ glm(trait \sim geno, data=fms, family=binomial(link=logit))

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|z\|)$
(Intercept)	-0.69	0.0692	-9.98	0.0000
geno	0.69	0.2673	2.58	0.0098

