PubH 7405 Biostat Regression - Fall 2005

Baolin Wu, Ph.D.
Division of Biostatistics
School of Public Health
University of Minnesota
baolin@biostat.umn.edu

Lecture 10/11 - Oct 10/12, 2005
Matrix Approach to Simple Linear Regression Analysis

- Matrix Overview
- Matrix Approach to Linear Regression
Matrix Definition

A matrix is a \textit{rectangular} array of elements arranged in \textit{rows} and \textit{columns}. The \textit{dimension} of the matrix is $n \times p$, where n is the number of rows and p the number of columns.

A matrix with n rows and p columns is usually represented using \textbf{boldface} letters, say A, which can be represented as

$$A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1j} & \cdots & a_{1p} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{i1} & a_{i2} & \cdots & a_{ij} & \cdots & a_{ip} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nj} & \cdots & a_{np}
\end{bmatrix}.$$
or

\[A = [a_{ij}] \quad i = 1, \cdots, n; \quad j = 1, \cdots, p, \]

where \(a_{ij} \) is the element in the \(i \)th row and \(j \)th column.

Two matrices \(A = B \), if their corresponding elements are equal, \(a_{ij} = b_{ij} \).

When \(n = p \), matrix \(A \) is called a square matrix. When \(p = 1 \), \(A \) is called a column vector or simply a vector. When \(n = 1 \), \(A \) is called a row vector.

column vector: \[
\begin{bmatrix}
Y_1 \\
Y_2 \\
Y_3
\end{bmatrix},
\begin{bmatrix}
X_1 \\
X_2 \\
X_3
\end{bmatrix}
\]

row vector: \[
\begin{bmatrix}
1 & X_1
\end{bmatrix}
\]

square matrix: \[
\begin{bmatrix}
3 & \sum_{i=1}^{3} X_i \\
\sum_{i=1}^{3} X_i & \sum_{i=1}^{3} X_i^2
\end{bmatrix}
\]

(design) matrix: \[
\begin{bmatrix}
1 & X_1 \\
1 & X_2 \\
1 & X_3
\end{bmatrix}
\]
R commands for creating matrix

simulate data for a regression model
n = 25; p = 2
x = rnorm(n); y = 1 + 2*x + rnorm(n)
or use real data
toluca = read.table("toluca.txt", head=TRUE)
x = toluca$LotSize; y = toluca$WorkHours
create a matrix
A = matrix(c(rep(1,n),x), n,p, byrow=FALSE)
dim(A); nrow(A); ncol(A)
column/row vector: R indexing cmd
A[,1]; A[,2] ## jth column
A[1,]; A[n,] ## ith row
Create matrix by binding columns/rows together
cbind(1, x); rbind(1, x)

Extract the (i,j)th element

Matrix is a special vector with "dim" attribute

A[1,1]; A[n,p]; A[1]; A[n*p]
Matrix Transpose

For $A = [a_{ij}]$, the transpose

$$A' = [a_{ji}], \ i = 1, \cdots, n; \ j = 1, \cdots, p.$$ \hspace{1cm} (1)

column vector: $Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}$

(transpose) row vector: $Y' = \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_n \end{bmatrix}$
A is called a symmetric matrix if $A = A'$, which implies $n = p$ and $a_{ij} = a_{ji}$.

symmetric matrix: $\begin{bmatrix}
 \sum_{i=1}^{n} X_i & \sum_{i=1}^{n} X_i \\
 \sum_{i=1}^{n} X_i & \sum_{i=1}^{n} X_i^2
\end{bmatrix}$

R commands for transposing a matrix

t() for matrix transpose

t(x); t(y)
Ap = t(A)

checking the dim and individual elements

dim(A); dim(Ap)
A[2,1]; Ap[1,2]
A[n,p]; Ap[p,n]
Matrix Summation and Subtraction

Element-wise summation and subtraction

\[C = A \pm B : c_{ij} = a_{ij} \pm b_{ij}. \] \hspace{1cm}(2)

R commands

create a random matrix B
B = matrix(rnorm(n*p), n, p)
Summation and subtraction
A + B; A - B
Matrix Multiplication

Inner product of two \mathbb{R}^n vectors,

$$x = (x_1, \cdots, x_n), \quad y = (y_1, \cdots, y_n)$$

is defined as

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k.$$ \hfill (3)

The product of a scalar λ (an ordinary number) and matrix A is

$$\lambda A = [\lambda a_{ij}].$$

The product of matrix A and B is determined by the inner products of
matrix rows and columns

\[C = AB : \quad c_{ij} = \langle (a_{i1}, \cdots, a_{in}), (b_{1j}, \cdots, b_{nj}) \rangle = \sum_{k=1}^{n} a_{ik} b_{kj}, \quad (4) \]

i.e. the \(ij \)th element of the product matrix is the inner product of the \(i \)th row of \(A \) and the \(j \)th column of \(B \) (viewed as vectors in \(\mathbb{R}^n \)). So \(A \) must have the same number of columns as the number of rows of \(B \). Generally \(AB \neq BA \).

The \(ij \)th element of product matrix \(A' A \) is the inner product of \(i \)th and \(j \)th columns of \(A \).
\[Y'Y = \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_n \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = [Y_1^2 + Y_2^2 + \cdots + Y_n^2] = [\sum Y_i^2] \]

\[X\beta = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} \beta_0 + X_1\beta_1 \\ \beta_0 + X_2\beta_1 \\ \vdots \\ \beta_0 + X_n\beta_1 \end{bmatrix} \]
\[X'X = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ X_1 & X_2 & \cdots & X_n \end{bmatrix} \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} = \begin{bmatrix} n & \sum X_i \\ \sum X_i & \sum X_i^2 \end{bmatrix} \]

\[X'Y = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ X_1 & X_2 & \cdots & X_n \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} \sum Y_i \\ \sum X_iY_i \end{bmatrix} \]
R commands for matrix product

create matrix X and Y
X = cbind(1,x); Y = cbind(y)
Bcoef = cbind(c(1,2))
"%%" is matrix product operator
t(Y)%*%Y
t(X)%*%X; X%*%t(X)
t(X)%*%Y; X%*%Bcoef
Special Types of Matrix

- **Diagonal Matrix**: square matrix with off-diagonal elements being zero.

- **Identify Matrix** I: diagonal matrix with diagonal elements being 1.

- **Scalar Matrix**: diagonal matrix with diagonal elements being the same, λI.

- **1**: a column vector with all elements being 1. J: a square matrix with all elements being 1. 0: a column vector containing only zeros.

$$1 = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, \quad J = \begin{bmatrix} 1 & \ldots & 1 \\ 1 & \ldots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \ldots & 1 \end{bmatrix}$$
We have

\[1'1 = n, \quad 11' = J. \]

R commands

```r
## symmetric matrix
Xs = t(X) %*% X; t(Xs) - Xs
## create diagonal matrix
diag(rnorm(n))
diag(n) ## n x n identity matrix
## extract diagonal elements of a square matrix
diag(Xs)
## special matrix
matrix(1, nrow=n, ncol=1); matrix(1, nrow=1, ncol=p)
matrix(1, ncol=p, nrow=p)
```
Rank of Matrix

The rank of a matrix is defined to be the maximum number of linearly independent columns in the matrix.

\[
\text{Rank}(AB) \leq \min(\text{Rank}(A), \text{Rank}(B))
\]
\[
\text{Rank}(A) = \text{Rank}(A') \leq \min(n, p)
\]
\[
\text{Rank}(A'A) = \text{Rank}(AA') = \text{Rank}(A)
\]

where \((n, p)\) are the number of rows and columns of matrix \(A\).

The \(p\) columns of matrix \(A\) is called linearly dependent if there exists \(p\) scalars \(\lambda_1, \cdots, \lambda_p\) not all zero and

\[
\lambda_1 C_1 + \lambda_2 C_2 + \cdots + \lambda_p C_p = 0,
\]
otherwise they are called independent, where C_i is the ith column of A.

R commands

```r
## several ways to get the ranks
qr(A,LAPACK=FALSE)$rank
svd(A)$d

## rank of matrix product
D1 = t(A) %*% A; D2 = A %*% t(A)
qr(D1)$rank; qr(D2)$rank
```
Matrix Inverse

The inverse of matrix A is another matrix, denoted by A^{-1}, such that

$$AA^{-1} = A^{-1}A = I. \quad (6)$$

A^{-1} exists if $\text{Rank}(A)$ equals to the number of rows/columns, when A is said to be nonsingular or of full rank (equivalent to the determinant not being zero).

Sample inverse matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad A^{-1} = \begin{bmatrix} \frac{d}{D} & \frac{-c}{D} \\ \frac{-b}{D} & \frac{a}{D} \end{bmatrix},$$
where $D = ab - cd$ is the **determinant** of the matrix A.

\[
X'X = \begin{bmatrix}
\sum X_i & \sum X_i^2 \\
\sum X_i & \sum X_i^2
\end{bmatrix}, \quad D = n \sum X_i^2 - (\sum X_i)^2 = n \sum (X_i - \bar{X})^2.
\]

\[
(X'X)^{-1} = \begin{bmatrix}
\frac{1}{n} + \frac{\bar{X}^2}{\sum (X_i - \bar{X})^2} & \frac{-\bar{X}}{\sum (X_i - \bar{X})^2} \\
\frac{-\bar{X}}{\sum (X_i - \bar{X})^2} & \frac{1}{\sum (X_i - \bar{X})^2}
\end{bmatrix}
\]

(R) commands

```r
## matrix determinant
Xs = t(X) %*% X; det(Xs)
## matrix inverse
Xs.inv = solve(Xs)
Xs%*%Xs.inv; Xs.inv%*%Xs
```
Some Basic Theorems for Matrix

\[A + B = B + A, \quad (A + B) + C = A + (B + C) \]
\[(AB)C = A(BC), \quad C(A + B) = CA + CB, \quad \lambda(A + B) = \lambda A + \lambda B \]
\[(A')' = A, \quad (A + B)' = A' + B', \quad (AB)' = B'A', \quad (ABC)' = C'B'A' \]
\[(A^{-1})^{-1} = A, \quad (AB)^{-1} = B^{-1}A^{-1}, \quad (ABC)^{-1} = C^{-1}B^{-1}A^{-1} \]
\[(A')^{-1} = (A^{-1})' \]

(8)
R commands

create matrix
A = matrix(rnorm(4),2,2); B = matrix(rnorm(4),2,2)
C = matrix(rnorm(4),2,2); lambda = 1.0

sum and product
\{(A+B)+C\} - \{A+(B+C)\}
\{(A B) C\} - \{A (B C)\}; \{C (A+B)\} - \{C A+C B\}
\{lambda (A+B)\} - \{lambda A+lambda B\}

transpose and inverse
\{t(t(A))\} - A; \{t(t(A+B))\} - \{t(A)+t(B)\}
\{t(A B)\}-\{t(B) t(A)\}; \{t(A B C)\}-\{t(C) t(B) t(A)\}
\{solve(solve(A))\} - A; \{solve(A B)\} - \{solve(B) solve(A)\}
\{solve(A B C)\} - \{solve(C) solve(B) solve(A)\}
\{solve(t(A))\} - \{t(solve(A))\}
Random Vector and Matrix

A random vector or a random matrix contains elements that are random variables. Their expectations are defined as the element-wise expectations

\[E(A) = [E(a_{i,j})]. \] \hspace{1cm} (9)

The \textit{variance-covariance matrix} of random vector

\[Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \]
are defined as

\[
\sigma^2(Y) = \begin{bmatrix}
\sigma^2(Y_1) & \sigma(Y_1, Y_2) & \cdots & \sigma(Y_1, Y_n) \\
\sigma(Y_2, Y_1) & \sigma^2(Y_2) & \cdots & \sigma(Y_2, Y_n) \\
\vdots & & & \vdots \\
\sigma(Y_n, Y_1) & \sigma(Y_n, Y_2) & \cdots & \sigma^2(Y_n)
\end{bmatrix} = [\sigma(Y_i, Y_j)], \quad (10)
\]

which is symmetric because \(\sigma(Y_i, Y_j) = \sigma(Y_j, Y_i)\).

Suppose \(A\) is a constant matrix, define \(W = AY\). We have

\[
E(A) = A \\
E(W) = E(AY) = AE(Y) \\
\sigma^2(W) = \sigma^2(AY) = A\sigma^2(Y)A'
\]

(11)
R commands

create two random samples
Y = matrix(rnorm(100*2), 100,2)

covariance and correlation matrix
cov(Y); cor(Y)

product matrix
product matrix
A = matrix(sample(1:9, size=4), 2, 2)
W = Y%*%t(A)
cov(W); A%*%cov(Y)%*%t(A)
Derivative in Matrix Function

Consider the linear function of parameters

$$\beta' = \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_p \end{bmatrix}$$

in the matrix form

$$F(\beta) = A'\beta = \beta'A, \ A = [a_{i1}], i = 1, \cdots, p.$$

It’s obvious that

$$\frac{\partial F}{\partial \beta_i} = a_{i1}.$$
So the vector of derivatives

\[\frac{\partial F}{\partial \beta} = \begin{bmatrix} \frac{\partial F}{\partial \beta_1} \\ \frac{\partial F}{\partial \beta_2} \\ \vdots \\ \frac{\partial F}{\partial \beta_p} \end{bmatrix} = A. \quad (12) \]

Consider the following \textit{quadratic function} of \(\beta \)

\[Q(\beta) = \beta'Q\beta, \quad Q = [q_{ij}], i = 1, \cdots, p, j = 1, \cdots, p \quad (13) \]

In equation (13), the terms involving \(\beta_i \) are

\[q_{ii}\beta_i^2 + \left\{ \sum_{j \neq i} (q_{ij} + q_{ji}) \beta_j \right\} \beta_i. \]
therefore

\[
\frac{\partial Q}{\partial \beta_i} = 2q_{ii}\beta_i + \sum_{j \neq i} (q_{ij} + q_{ji})\beta_j
\]

\[= \sum_j (q_{ij} + q_{ji})\beta_j, \quad (14)\]

and, hence we have the vector of derivatives

\[
\frac{\partial Q}{\partial \beta} = \begin{bmatrix}
\frac{\partial Q}{\partial \beta_1} \\
\frac{\partial Q}{\partial \beta_2} \\
\vdots \\
\frac{\partial Q}{\partial \beta_p}
\end{bmatrix} = (Q + Q')\beta
\]

\[= 2Q\beta \quad \text{if } q_{ij} = q_{ji}. \quad (15)\]
For quadratic function (13), we can always write it using a symmetric matrix

\[\tilde{Q} = \frac{1}{2}(Q + Q'), \quad Q(\beta) = \beta' \tilde{Q} \beta, \quad \frac{\partial Q}{\partial \beta} = 2\tilde{Q} \beta. \]
Simple Linear Regression in Matrix Terms

The normal error regression model

\[Y_i = \beta_0 + X_i \beta_1 + \epsilon_i \quad i = 1, \cdots, n, \]

can be compactly written in matrix terms

\[\mathbf{Y} = \mathbb{E}(\mathbf{Y}) + \mathbf{\epsilon} = \mathbf{X}\mathbf{\beta} + \mathbf{\epsilon}, \quad (16) \]

where

\[\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix}, \quad \mathbf{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}, \quad \mathbf{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix} \]
Our assumption for the error term ϵ can be summarized as ϵ is a vector of independent normal variables with $\mathbb{E}(\epsilon) = 0$ and $\sigma^2(\epsilon) = \sigma^2 I$, where I is a $n \times n$ identity matrix.
Least Squares Estimation

Our goal is to minimize the quadratic difference

\[
Q = \| Y - X\beta \|^2 = (Y - X\beta)'(Y - X\beta) \\
= \beta'X'X\beta - \beta'X'Y - Y'X\beta + Y'Y \\
= \beta'X'X\beta - 2\beta'X'Y + Y'Y \tag{17}
\]

Refer to equation (12) and (15), we have

\[
\frac{\partial Q}{\partial \beta} = 2X'X\beta - 2X'Y = 2X'(X\beta - Y), \tag{18}
\]

So the least squares estimator \(b = [b_0 \ b_1]' \) satisfy the following normal
equation

\[X'(Xb - Y) = 0, \] (19)

which says the residuals

\[e = Y - Xb \]

are orthogonal to the columns of \(X \), i.e.

\[1'e = \sum_{i=1}^{n} e_i = 0, \quad \sum_{i=1}^{n} X_i e_i = 0. \]

We can also derive the solution in matrix term as

\[b = (X'X)^{-1}X'Y. \] (20)
According to (11) we have

\[
\sigma^2(b) = (X'X)^{-1}X'Cov(Y)\{(X'X)^{-1}X'\}'
\]

\[
= (X'X)^{-1}X'\sigma^2IX(X'X)^{-1}
\]

\[
= \sigma^2(X'X)^{-1}
\]

(21)
Fitted Values and Residuals

The fitted values

\[\hat{Y} = \begin{bmatrix} \hat{Y}_1 \\ \hat{Y}_2 \\ \vdots \\ \hat{Y}_n \end{bmatrix} = Xb = \begin{bmatrix} 1 & X_1 \\ 1 & X_2 \\ \vdots & \vdots \\ 1 & X_n \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \end{bmatrix} \]

According to (20) we have

\[\hat{Y} = Xb = X(X'X)^{-1}X'Y, \]

where

\[H = X(X'X)^{-1}X' \quad (22) \]
is called the hat matrix or projection matrix. It is obvious that H is symmetric and

$$HH = H.$$

In general, a matrix M is said to be idempotent if $MM = M$.

According to (11) we have

$$\sigma^2(\hat{Y}) = HCov(Y)H' = H\sigma^2 IH$$

$$= \sigma^2 H$$

(23)

Similarly we can write residuals as

$$e = Y - \hat{Y} = Y - HY = (I - H)Y.$$

(24)

The matrix $I - H$ is also symmetric and idempotent.
According to (11) we have

\[
\sigma^2(e) = (I - H)Cov(Y)(I - H)'
\]

\[
= (I - H)\sigma^2 I(I - H)
\]

\[
= \sigma^2(I - H)
\]
Analysis of Variance Results

Some useful facts

\[J = \begin{bmatrix}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1 \\
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
\vdots \\
1 \\
\end{bmatrix} \begin{bmatrix}
1 & 1 & \cdots & 1 \\
\end{bmatrix} = 11'
\]

We have

\[Y'Y = \sum_{i=1}^{n} Y_i^2, \quad Y'1 = \sum_{i=1}^{n} Y_i \]
and
\[
\left(\sum_{i=1}^{n} Y_i \right)^2 = Y'1(Y'1)' = Y'11'Y = Y'JY
\]

So
\[
\begin{align*}
SSTO & = \sum_{i=1}^{n} Y_i^2 - \left(\sum_{i=1}^{n} Y_i \right)^2 / n = Y'Y - \frac{1}{n} Y'JY \\
SSE & = e'e = Y'(I - H)Y = Y'Y - Y'HY \\
& = e'(Y - Xb) = e'Y = (Y - Xb)'Y = Y'Y - b'X'Y \\
SSR & = SSTO - SSE = b'X'Y - \frac{1}{n} Y'JY \\
& = Y'HY - \frac{1}{n} Y'JY,
\end{align*}
\]
therefore we have a unified formula for these three sum of squares

\[Y'AY, \]

where \(A \) are

\[
\begin{align*}
SSTO &: I - \frac{1}{n}J \\
SSE &: I - H \\
SSR &: H - \frac{1}{n}J,
\end{align*}
\]

so they are all quadratic functions of \(Y \).
Statistical Inferences

As shown in (21) and (7)

\[\sigma^2(b) = \sigma^2(X'X)^{-1} = \begin{bmatrix}
\frac{\sigma^2}{n} + \frac{\sigma^2 \bar{X}^2}{\sum(X_i - \bar{X})^2} & \frac{-\bar{X} \sigma^2}{\sum(X_i - \bar{X})^2} \\
\frac{\sum(X_i - \bar{X})^2}{\sum(X_i - \bar{X})^2} & \frac{\sum(X_i - \bar{X})^2}{\sum(X_i - \bar{X})^2}
\end{bmatrix}, \]

replace \(\sigma^2 \) with \(MSE \) we can derive the estimated variance matrix \(s^2(b) \).

The mean response at \(X_h \) can be written as

\[\hat{Y}_h = X'_h b, \text{ where } X_h = [1 \ X_h]', \]
so

\[\sigma^2(\hat{Y}_h) = X'_h \sigma^2(b) X_h = \sigma^2 X'_h (X'X)^{-1} X_h \]

\[= \sigma^2 \left\{ \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right\} , \quad (27) \]

replace \(\sigma^2 \) with \(MSE \) we can derive the estimated variance

\[s^2(\hat{Y}_h) = MSE \left\{ \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum (X_i - \bar{X})^2} \right\} . \]

When predicting a new observation, we have

\[\sigma^2(\text{pred}) = \sigma^2 + \sigma^2(\hat{Y}_h) = \sigma^2(1 + X'_h (X'X)^{-1} X_h) , \]
replace σ^2 with MSE we can derive the estimated variance

$$s^2(pred) = MSE \left\{ 1 + \frac{1}{n} + \frac{(X_h - \bar{X})^2}{\sum(X_i - \bar{X})^2} \right\}.$$
R commands

```r
### matrix approach to OLS
n = 25; p = 2
x = rnorm(n); y = 1 + 2*x + rnorm(n)
reg = lm(y~x)

bY = matrix(y, ncol=1) ## cbind(y)
bX = cbind(1,x)
Xs = t(bX)%*%bX
Xs.inv = solve(Xs)

## LS estimates
bhat = Xs.inv%*%t(bX)%*%bY
## bhat = solve(Xs,t(bX)%*%bY)
```
put estimates row by row for comparison
rbind(reg$coef, t(bhat))

prediction and residuals
Hmat = bX%*%Xs.inv%*%t(bX)
Hmat = bX%*%solve(Xs,t(bX))
Yhat = Hmat%*%bY ## bX%*%bhat
res = bY-Yhat ## (diag(p)-Hmat)%*%bY

rbind(reg$fit, t(Yhat))
rbind(reg$res, t(res))

MSE
sig2 = sum(res^2)/(n-p)
normal equation
round(t(bX) %*% res, 7)

variance estimation
s2b = sig2 * Xs.inv
s2yhat = sig2 * Hmat
s2res = sig2 * (diag(n) - Hmat)

ANOVA
special matrix J
J = matrix(1, n, n)
Assto = diag(n) - J/n
Asse = diag(n) - Hmat
Assr = Hmat - J/n
ssto = t(bY) %*% Assto %*% bY
sse = t(bY)%*%Asse%*%bY
ssr = t(bY)%*%Assr%*%bY

anova(reg)
c(ssr,sse,ssto)

mean estimation and prediction
Xh = matrix(c(1,1.5), ncol=1)
Yhhat = t(Xh)%*%bhat
predict(reg, data.frame(x=1.5))
s2yh = sig2*t(Xh)%*%Xs.inv%*%Xh
sig2*(1/n+(Xh[2]-mean(x))^2/sum((x-mean(x))^2))