Overview

- Biostatisticians in the drug and medical device industries are increasingly faced with data that are:
 - **highly multivariate**, with many important predictors and response variables
 - **temporally correlated** (longitudinal, survival studies)
 - **costly and difficult to obtain**, but often with **historical data** on previous but similar drugs or devices
Overview

- Biostatisticians in the drug and medical device industries are increasingly faced with data that are:
 - highly multivariate, with many important predictors and response variables
 - temporally correlated (longitudinal, survival studies)
 - costly and difficult to obtain, but often with historical data on previous but similar drugs or devices

- Recently, the FDA Center for Devices has encouraged hierarchical Bayesian statistical approaches –
 - Methods are not terribly novel: Bayes (1763)!
 - But their practical application has only become feasible in the last decade or so due to advances in computing via Markov chain Monte Carlo (MCMC) methods and related WinBUGS software
Role of Bayes in drug/device settings

- **Safety/efficacy studies:** Historical data and/or information from published literature can be used to reduce sample size, reducing time and expense. Unlimited looks at accumulating data are also permitted (due to different framework for testing).
Role of Bayes in drug/device settings

- **Safety/efficacy studies:** Historical data and/or information from published literature can be used to reduce sample size, reducing time and expense. Unlimited looks at accumulating data are also permitted (due to different framework for testing).

- **Equivalence studies:** Bayes allows one to make direct statements about the probability that one drug is equivalent to another, rather than merely “failing to reject” the hypothesis of no difference.
Role of Bayes in drug/device settings

- **Safety/efficacy studies:** Historical data and/or information from published literature can be used to reduce sample size, reducing time and expense. Unlimited looks at accumulating data are also permitted (due to different framework for testing).

- **Equivalence studies:** Bayes allows one to make direct statements about the probability that one drug is equivalent to another, rather than merely “failing to reject” the hypothesis of no difference.

- **Meta-analysis:** Bayes facilitates combining disparate but similar studies of a common drug or device.
Role of Bayes in drug/device settings

- **Safety/efficacy studies:** Historical data and/or information from published literature can be used to reduce sample size, reducing time and expense. Unlimited looks at accumulating data are also permitted (due to different framework for testing).

- **Equivalence studies:** Bayes allows one to make direct statements about the probability that one drug is equivalent to another, rather than merely "failing to reject" the hypothesis of no difference.

- **Meta-analysis:** Bayes facilitates combining disparate but similar studies of a common drug or device.

- **Hierarchical models:** Realistic models can be fit to complicated, multilevel data (e.g., multiple observations per patient, or multiple patients per clinical site), accounting for all sources of uncertainty.
Bayesian design of experiments

In traditional sample size formulae, one often plugs in a "best guess" or "smallest clinically significant difference" for $\theta \Rightarrow "Everyone is a Bayesian at the design stage."
Bayesian design of experiments

In traditional sample size formulae, one often plugs in a “best guess” or “smallest clinically significant difference” for $\theta \Rightarrow “Everyone is a Bayesian at the design stage.”

In practice, frequentist and Bayesian outlooks arise:
Bayesian design of experiments

In traditional sample size formulae, one often plugs in a “best guess” or “smallest clinically significant difference” for $\theta \Rightarrow \text{"Everyone is a Bayesian at the design stage."}$

In practice, frequentist and Bayesian outlooks arise:

- Applicants may have a more Bayesian outlook:
 - to take advantage of historical data or expert opinion (and possibly stop the trial sooner), or
 - to “peek” at the accumulating data without affecting their ability to analyze it later
Bayesian design of experiments

In traditional sample size formulae, one often plugs in a “best guess” or “smallest clinically significant difference” for $\theta \Rightarrow \text{“Everyone is a Bayesian at the design stage.”}$

In practice, frequentist and Bayesian outlooks arise:

- **Applicants** may have a more Bayesian outlook:
 - to take advantage of historical data or expert opinion (and possibly stop the trial sooner), or
 - to “peek” at the accumulating data without affecting their ability to analyze it later

- **Regulatory agencies** may appreciate this, but also retain many elements of frequentist thinking:
 - to ensure that in the long run they will only rarely approve a useless or harmful product
Bayesian design of experiments

In traditional sample size formulae, one often plugs in a “best guess” or “smallest clinically significant difference” for $\theta \Rightarrow \text{“Everyone is a Bayesian at the design stage.”}$

In practice, frequentist and Bayesian outlooks arise:

- **Applicants** may have a more Bayesian outlook:
 - to take advantage of historical data or expert opinion (and possibly stop the trial sooner), or
 - to “peek” at the accumulating data without affecting their ability to analyze it later

- **Regulatory agencies** may appreciate this, but also retain many elements of frequentist thinking:
 - to ensure that in the long run they will only rarely approve a useless or harmful product

Applicants must thus design their trials accordingly!
Again, the problem is essentially one of \textit{sample size determination} using a Bayesian approach.
Bayesian clinical trial design

Again, the problem is essentially one of sample size determination using a Bayesian approach.

Example 6.5: Safety Study B, in which we must show freedom from severe drug-related adverse events (AEs) at 3 months will have a 95% lower confidence bound at least 85%.
Bayesian clinical trial design

Again, the problem is essentially one of **sample size determination** using a Bayesian approach.

Example 6.5: Safety Study B, in which we must show freedom from severe drug-related adverse events (AEs) at 3 months will have a 95% lower confidence bound at least 85%.

Problem: Using traditional statistical methods, we obtain an estimated sample size of over 100 – *too large!*
Bayesian clinical trial design

Again, the problem is essentially one of sample size determination using a Bayesian approach.

Example 6.5: Safety Study B, in which we must show freedom from severe drug-related adverse events (AEs) at 3 months will have a 95% lower confidence bound at least 85%.

Problem: Using traditional statistical methods, we obtain an estimated sample size of over 100 – too large!

But: We have access to the following (1-month) data from Safety Study A:

<table>
<thead>
<tr>
<th>count (%)</th>
<th>No AE</th>
<th>AE</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>7</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>(94)</td>
<td>(6)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 6: Bayesian Design, with Application to Clinical Trials – p. 4/30
Bayesian clinical trial design

Since we expect similar results in two studies, use Study A data for the prior \(\Rightarrow\) reduced sample size!
Since we expect similar results in two studies, use Study A data for the prior \(\Rightarrow \) reduced sample size!

Model: Suppose \(N \) patients in Study B, and for each,

\[
\theta = \Pr(\text{patient does not experience the AE})
\]

Let \(X \) = \# Study B patients with no AE ("successes"). Assuming **independent** patients,

\[
X|\theta \sim Binomial(N, \theta)
\]
Bayesian clinical trial design

Since we expect similar results in two studies, use Study A data for the prior ⇒ reduced sample size!

Model: Suppose N patients in Study B, and for each,

$$\theta = \text{Pr(patient does not experience the AE)}$$

Let $X = \#$ Study B patients with no AE (“successes”).

Assuming independent patients,

$$X|\theta \sim \text{Binomial}(N, \theta)$$

If the prior is $\theta \sim \text{Beta}(a, b)$, then the posterior is

$$\theta|X \sim \text{Beta}(X + a, N - X + b)$$

Note that a $\text{Beta}(a = 110, b = 7)$ prior (the target prior) delivers equal weighting of Studies A and B.
Bayesian clinical trial design

- Other prior possibilities:
Bayesian clinical trial design

Other prior possibilities:

- **Downweight** the prior sample size to $117w$, $0 \leq w \leq 1$ via a $Beta(110w, 7w)$ prior. This has the same overall success rate, but decreases our confidence: each “old” patient is only worth the fraction w of a new patient.
Bayesian clinical trial design

Other prior possibilities:

- **Downweight** the prior sample size to $117w$, $0 \leq w \leq 1$ via a $Beta(110w, 7w)$ prior. This has the same overall success rate, but decreases our confidence: each “old” patient is only worth the fraction w of a new patient.

- **Shift** the target to a $Beta(110 + s, 7 - s)$ distribution for $0 \leq s < 7$. This has the same prior sample size (117), but shifts to more optimistic ($s > 0$) or pessimistic ($s < 0$) levels by increasing or decreasing the number of successes in the “old” dataset.
Bayesian clinical trial design

To find optimal design:
Bayesian clinical trial design

To find optimal design:

- Draw θ_j from the prior, followed by X_j from the binomial likelihood, $j = 1, \ldots, N_{rep}$.
Bayesian clinical trial design

To find optimal design:

- Draw θ_j from the prior, followed by X_j from the binomial likelihood, $j = 1, \ldots, N_{\text{rep}}$.
- Check to see if the 2.5% point of the simulated posterior is in fact greater than C.
Bayesian clinical trial design

To find optimal design:

1. Draw θ_j from the prior, followed by X_j from the binomial likelihood, $j = 1, \ldots, N_{rep}$.
2. Check to see if the 2.5% point of the simulated posterior is in fact greater than C.
3. The observed proportion of times this happens is the "Bayesian power"!
Bayesian clinical trial design

To find optimal design:

- Draw θ_j from the prior, followed by X_j from the binomial likelihood, $j = 1, \ldots, N_{rep}$.
- Check to see if the 2.5% point of the simulated posterior is in fact greater than C.
- The observed proportion of times this happens is the "Bayesian power"!

Repeat this over a grid of C values, several possible sample sizes N, and several priors (indexed by w or s). This then produces the “Bayesian sample size table”!
Bayesian clinical trial design

To find optimal design:
- Draw θ_j from the prior, followed by X_j from the binomial likelihood, $j = 1, \ldots, N_{rep}$.
- Check to see if the 2.5% point of the simulated posterior is in fact greater than C.
- The observed proportion of times this happens is the "Bayesian power"!

Repeat this over a grid of C values, several possible sample sizes N, and several priors (indexed by w or s). This then produces the "Bayesian sample size table"!

The figure and table on the next two slides show the actual posteriors themselves and the Bayesian sample size table, respectively...
Results: Bayesian Design of Study B

Priors and simulated posteriors, Chronicle B study, beta-binomial design using weighted Beta(a,b) priors (target -> downweighted)

Beta(110w,7w) prior with w = 1
Beta(110w,7w) prior with w = 0.5
Beta(110w,7w) prior with w = 0.1

Nrep = 100, N = 20, w = 1
Nrep = 100, N = 20, w = 0.5
Nrep = 100, N = 20, w = 0.1

N = 20 posteriors

N = 50 posteriors

S code to create this plot is available in www.biostat.umn.edu/~brad/w.S

•
Results: Bayesian Design of Study B

<table>
<thead>
<tr>
<th>lower limit</th>
<th>target</th>
<th>50% weight</th>
<th>10% weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N = 20$</td>
<td>$N = 50$</td>
<td>$N = 20$</td>
</tr>
<tr>
<td>0.85</td>
<td>1.00</td>
<td>0.98</td>
<td>0.92</td>
</tr>
<tr>
<td>0.86</td>
<td>0.99</td>
<td>0.98</td>
<td>0.92</td>
</tr>
<tr>
<td>0.87</td>
<td>0.97</td>
<td>0.91</td>
<td>0.78</td>
</tr>
<tr>
<td>0.88</td>
<td>0.87</td>
<td>0.87</td>
<td>0.78</td>
</tr>
<tr>
<td>0.89</td>
<td>0.71</td>
<td>0.80</td>
<td>0.37</td>
</tr>
<tr>
<td>0.90</td>
<td>0.44</td>
<td>0.52</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Posterior predictive probabilities that the 95% lower confidence bound will exceed the given limit, for two sample sizes: $N = 20$ and $N = 50$, and
Results: Bayesian Design of Study B

<table>
<thead>
<tr>
<th>lower limit</th>
<th>target $N = 20$</th>
<th>$N = 50$</th>
<th>50% weight $N = 20$</th>
<th>$N = 50$</th>
<th>10% weight $N = 20$</th>
<th>$N = 50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>1.00</td>
<td>0.98</td>
<td>0.92</td>
<td>0.91</td>
<td>0.55</td>
<td>0.78</td>
</tr>
<tr>
<td>0.86</td>
<td>0.99</td>
<td>0.98</td>
<td>0.92</td>
<td>0.88</td>
<td>0.55</td>
<td>0.78</td>
</tr>
<tr>
<td>0.87</td>
<td>0.97</td>
<td>0.91</td>
<td>0.78</td>
<td>0.79</td>
<td>0.55</td>
<td>0.73</td>
</tr>
<tr>
<td>0.88</td>
<td>0.87</td>
<td>0.87</td>
<td>0.78</td>
<td>0.63</td>
<td>0.55</td>
<td>0.73</td>
</tr>
<tr>
<td>0.89</td>
<td>0.71</td>
<td>0.80</td>
<td>0.37</td>
<td>0.48</td>
<td>0.55</td>
<td>0.73</td>
</tr>
<tr>
<td>0.90</td>
<td>0.44</td>
<td>0.52</td>
<td>0.37</td>
<td>0.48</td>
<td>0.55</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Posterior predictive probabilities that the 95% lower confidence bound will exceed the given limit, for

- two sample sizes: $N = 20$ and $N = 50$, and
- three $Beta(110w, 7w)$ priors: $w = 1$ (target), $w = 0.5$ (50% downweighted), and $w = 0.1$ (90% downweighted).
Results: Bayesian Design of Study B

Priors and simulated posteriors, Chronicle B study, beta-binomial design using shifted Beta(a,b) priors (‘target-optimistic-pessimistic’)

the three priors

\[N = 20 \] posteriors

\[N = 50 \] posteriors

💡 S code to create this plot is available in

www.biostat.umn.edu/~brad/tlc.S
Results: Bayesian Design of Study B

<table>
<thead>
<tr>
<th>lower limit</th>
<th>target</th>
<th></th>
<th>optimistic</th>
<th></th>
<th>pessimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$N = 20$</td>
<td>$N = 50$</td>
<td>$N = 20$</td>
<td>$N = 50$</td>
<td>$N = 20$</td>
</tr>
<tr>
<td>0.85</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>0.94</td>
</tr>
<tr>
<td>0.86</td>
<td>0.99</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>0.54</td>
</tr>
<tr>
<td>0.87</td>
<td>0.97</td>
<td>0.91</td>
<td>1.00</td>
<td>1.00</td>
<td>0.22</td>
</tr>
<tr>
<td>0.88</td>
<td>0.87</td>
<td>0.87</td>
<td>1.00</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>0.89</td>
<td>0.71</td>
<td>0.80</td>
<td>1.00</td>
<td>0.99</td>
<td>0.00</td>
</tr>
<tr>
<td>0.90</td>
<td>0.44</td>
<td>0.52</td>
<td>1.00</td>
<td>0.98</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Posterior predictive probabilities that the 95% lower confidence bound will exceed the given limit, for

- two sample sizes: $N = 20$ and $N = 50$, and
Results: Bayesian Design of Study B

<table>
<thead>
<tr>
<th>lower limit</th>
<th>target $N = 20$</th>
<th>target $N = 50$</th>
<th>optimistic $N = 20$</th>
<th>optimistic $N = 50$</th>
<th>pessimistic $N = 20$</th>
<th>pessimistic $N = 50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.85</td>
<td>1.00</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>0.94</td>
<td>0.82</td>
</tr>
<tr>
<td>0.86</td>
<td>0.99</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
<td>0.54</td>
<td>0.75</td>
</tr>
<tr>
<td>0.87</td>
<td>0.97</td>
<td>0.91</td>
<td>1.00</td>
<td>1.00</td>
<td>0.22</td>
<td>0.45</td>
</tr>
<tr>
<td>0.88</td>
<td>0.87</td>
<td>0.87</td>
<td>1.00</td>
<td>0.99</td>
<td>0.00</td>
<td>0.25</td>
</tr>
<tr>
<td>0.89</td>
<td>0.71</td>
<td>0.80</td>
<td>1.00</td>
<td>0.99</td>
<td>0.00</td>
<td>0.12</td>
</tr>
<tr>
<td>0.90</td>
<td>0.44</td>
<td>0.52</td>
<td>1.00</td>
<td>0.98</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Posterior predictive probabilities that the 95% lower confidence bound will exceed the given limit, for

- two sample sizes: $N = 20$ and $N = 50$, and
- three $\text{Beta}(110 + s, 7 - s)$ priors: $s = 0$ (target), $s = 3$ (optimistic), and $s = -3$ (pessimistic).
Addendum: Is our prior “ethical”?

Based only on the $Beta(110w, 7w)$ prior with $w = 0.75$, the 95% lower confidence bound is $\theta_L = 0.882$. Also,

$$E_X[P(\theta_L > 0.88 | X)] = 0.80 \text{ with } N = 50.$$

But notice the prior already satisfies this condition; there is no need to collect more data \Rightarrow prior is “unethical”!
Addendum: Is our prior “ethical”?

Based only on the $Beta(110w, 7w)$ prior with $w = 0.75$, the 95% lower confidence bound is $\theta_L = 0.882$. Also,

$$E_X[P(\theta_L > 0.88|X)] = 0.80 \text{ with } N = 50.$$

But notice the prior already satisfies this condition; there is no need to collect more data \Rightarrow prior is “unethical”!

BUT: It is permissible (and sensible) to use a different prior in the design and analysis stages! With $w = .60$,

$$\theta_L = 0.874 < 0.88 \quad \text{(prior is now ethical)}$$

Now generate future (θ_j, X_j) pairs using the unweighted $Beta(110, 7)$ prior (i.e., future data will look exactly like the old data) \Rightarrow revised Bayesian power statement

$$E_X[P(\theta_L > 0.88|X)] = 0.81 \text{ with } N = 50.$$
Software for Bayesian Clinical Trials

- BART and iBART, based on the range of equivalence ideas of Spiegelhalter et al. (see more below...)
Software for Bayesian Clinical Trials

- **BART** and **iBART**, based on the range of equivalence ideas of Spiegelhalter et al. (see more below...)
- Quite an assortment from **MD Anderson Cancer Center**:
 - **CRMSimulator**: a simplified, primarily pedagogical continual reassessment method program
 - **EffTox**: dose-finding based on efficacy and toxicity outcomes (Thall and Cook, 2004)
 - **Multc Lean**: a “lean” (just two outcomes, efficacy and toxicity) implementation of multiple comparison safety monitoring (Thall, Simon and Estey, 1995)
 - **Predictive Probabilities**: of superiority, futility, etc. for trials with binary or time-to-event outcomes – useful for design and interim analysis
Software for Bayesian Clinical Trials

- **BART** and **iBART**, based on the range of equivalence ideas of Spiegelhalter et al. (see more below...)

- Quite an assortment from **MD Anderson Cancer Center**:
 - **CRMSimulator**: a simplified, primarily pedagogical continual reassessment method program
 - **EffTox**: dose-finding based on efficacy and toxicity outcomes (Thall and Cook, 2004)
 - **Multc Lean**: a “lean” (just two outcomes, efficacy and toxicity) implementation of multiple comparison safety monitoring (Thall, Simon and Estey, 1995)
 - **Predictive Probabilities**: of superiority, futility, etc. for trials with binary or time-to-event outcomes – useful for design and interim analysis

- All have well-developed (often Windows) user interfaces, but none appear to be MCMC-driven.
Other relevant published work

- O’Hagan and Stevens (2001, *Medical Decision Making*): Bayesian design to demonstrate cost-effectiveness of a treatment using simple models (no MCMC) and enormous assumptions re: utility functions and likelihood/prior covariance matrices!
Other relevant published work

- O’Hagan and Stevens (2001, *Medical Decision Making*): Bayesian design to demonstrate cost-effectiveness of a treatment using simple models (no MCMC) and enormous assumptions re: utility functions and likelihood/prior covariance matrices!

- Wang and Gelfand (2002, *Statistical Science*): MCMC-based sample size determination for model performance or for distinguishing between two models, but where utility functions (as in e.g. Müller and Parmigiani, 1995) are not considered.
Other relevant published work

- O’Hagan and Stevens (2001, *Medical Decision Making*): Bayesian design to demonstrate cost-effectiveness of a treatment using simple models (no MCMC) and *enormous* assumptions re: utility functions and likelihood/prior covariance matrices!

- Wang and Gelfand (2002, *Statistical Science*): MCMC-based sample size determination for model performance or for distinguishing between two models, but where utility functions (as in e.g. Müller and Parmigiani, 1995) are not considered.

- and *several* other papers/short courses in the last decade or so, much of it by MD Anderson staff!
Other relevant published work

- O’Hagan and Stevens (2001, *Medical Decision Making*): Bayesian design to demonstrate cost-effectiveness of a treatment using simple models (no MCMC) and enormous assumptions re: utility functions and likelihood/prior covariance matrices!

- Wang and Gelfand (2002, *Statistical Science*): MCMC-based sample size determination for model performance or for distinguishing between two models, but where utility functions (as in e.g. Müller and Parmigiani, 1995) are not considered.

- and several other papers/short courses in the last decade or so, much of it by MD Anderson staff!

- Ideas are there, but practitioners need
Other relevant published work

- O’Hagan and Stevens (2001, *Medical Decision Making*): Bayesian design to demonstrate cost-effectiveness of a treatment using simple models (no MCMC) and enormous assumptions re: utility functions and likelihood/prior covariance matrices!

- Wang and Gelfand (2002, *Statistical Science*): MCMC-based sample size determination for model performance or for distinguishing between two models, but where utility functions (as in e.g. Müller and Parmigiani, 1995) are not considered.

- and several other papers/short courses in the last decade or so, much of it by MD Anderson staff!

- Ideas are there, but practitioners need
 - easy-to-follow “rulebook,” laying out the key issues
Other relevant published work

- O’Hagan and Stevens (2001, *Medical Decision Making*): Bayesian design to demonstrate cost-effectiveness of a treatment using simple models (no MCMC) and enormous assumptions re: utility functions and likelihood/prior covariance matrices!

- Wang and Gelfand (2002, *Statistical Science*): MCMC-based sample size determination for model performance or for distinguishing between two models, but where utility functions (as in e.g. Müller and Parmigiani, 1995) are not considered.

And several other papers/short courses in the last decade or so, much of it by MD Anderson staff!

Ideas are there, but practitioners need
- easy-to-follow “rulebook,” laying out the key issues
- corresponding suite of easy-to-use software!
Advanced models: Adding MCMC

Previous methods and R software are fine when the posterior is available in closed form, as in previous beta/binomial and Dirichlet/multinomial models.
Advanced models: Adding MCMC

Previous methods and R software are fine when the posterior is available in closed form, as in previous beta/binomial and Dirichlet/multinomial models.

But many models in clinical trial design and analysis will require Markov chain Monte Carlo (MCMC) computational methods to sample from the posterior.
Advanced models: Adding MCMC

Previous methods and R software are fine when the posterior is available in closed form, as in previous beta/binomial and Dirichlet/multinomial models.

But many models in clinical trial design and analysis will require Markov chain Monte Carlo (MCMC) computational methods to sample from the posterior.

Most popular software package for this: WinBUGS

- Uses R-like syntax to specify models
- Examples manual includes survival models (Weibull and Cox), longitudinal models, bioequivalence, meta-analysis, and others of biostatistical interest
- freely available from
 http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml
Example: Weibull survival model

Let t_i be the time until death for subject i, with corresponding treatment indicator x_i ($= 0$ or 1 for control and treatment, respectively). Suppose

$$t_i \sim \text{Weibull}(r, \mu_i), \quad \text{where } \mu_i = e^{-\left(\beta_0 + \beta_1 x_i\right)}.$$
Example: Weibull survival model

Let \(t_i \) be the time until death for subject \(i \), with corresponding treatment indicator \(x_i \) (= 0 or 1 for control and treatment, respectively). Suppose

\[
t_i \sim \text{Weibull}(r, \mu_i), \quad \text{where} \quad \mu_i = e^{-(\beta_0 + \beta_1 x_i)}.
\]

Then the baseline hazard function is \(\lambda_0(t_i) = rt_i^{r-1} \), and the median survival time for subject \(i \) is

\[
m_i = [(\log 2)e^{\beta_0 + \beta_1 x_i}]^{1/r}.
\]
Example: Weibull survival model

Let t_i be the time until death for subject i, with corresponding treatment indicator x_i (= 0 or 1 for control and treatment, respectively). Suppose

$$t_i \sim \text{Weibull}(r, \mu_i), \quad \text{where } \mu_i = e^{-(\beta_0 + \beta_1 x_i)}.$$

Then the baseline hazard function is $\lambda_0(t_i) = rt_i^{r-1}$, and the median survival time for subject i is

$$m_i = [(\log 2)e^{\beta_0 + \beta_1 x_i}]^{1/r}.$$

The value of β_1 corresponding to a 15% increase in median survival in the treatment group satisfies

$$e^{\beta_1/r} = 1.15 \iff \beta_1 = r \log(1.15).$$
Range of equivalence

The range of β_1 values within which we are indifferent as to use of treatment or control
Range of equivalence

- The range of β_1 values within which we are indifferent as to use of treatment or control
- lower limit β_I, the clinical inferiority boundary
 - We typically take $\beta_I = 0$, since we would never prefer a harmful treatment
Range of equivalence

- The range of β_1 values within which we are indifferent as to use of treatment or control

- lower limit β_I, the clinical inferiority boundary
 - We typically take $\beta_I = 0$, since we would never prefer a harmful treatment

- upper limit β_S, the clinical superiority boundary
 - We typically take $\beta_S > 0$, since we may require “clinically significant” improvement under the treatment (due to cost, toxicity, etc.)
 - Example: If $r = 2$, then $\beta_S = 2 \log(1.15) \approx 0.28$ corresponds to 15% improvement in median survival
Range of equivalence

- The range of β_1 values within which we are indifferent as to use of treatment or control
- lower limit β_I, the clinical inferiority boundary
 - We typically take $\beta_I = 0$, since we would never prefer a harmful treatment
- upper limit β_S, the clinical superiority boundary
 - We typically take $\beta_S > 0$, since we may require “clinically significant” improvement under the treatment (due to cost, toxicity, etc.)
 - Example: If $r = 2$, then $\beta_S = 2 \log(1.15) \approx 0.28$ corresponds to 15% improvement in median survival
- The outcome of the trial can then be based on the location of the 95% posterior confidence interval for β_1, say (β_L, β_U), relative to the indifference zone!....
The six possible outcomes and decisions

(\(\beta_L\) accept control) \(\beta_U\) reject treatment
(\(\beta_L\) reject treatment) \(\beta_U\) equivalence
(\(\beta_L\) equivalence) \(\beta_U\) reject control
(\(\beta_L\) reject control) \(\beta_U\) accept treatment
(\(\beta_L\) accept control) \(\beta_U\) reject treatment
(\(\beta_L\) reject treatment) \(\beta_U\) equivalence

\(\beta_I = 0\) \(\beta_S = 0.28\)

Note both “acceptance” and “rejection” are possible!
Community of priors

Spiegelhalter et al. (1994) recommend considering several priors, in order to represent the broadest possible audience:

- Skeptical Prior
Community of priors

Spiegelhalter et al. (1994) recommend considering several priors, in order to represent the broadest possible audience:

- **Skeptical Prior**
 - One that believes the treatment is likely no better than control (as might be believed by a regulatory agency)
Community of priors

Spiegelhalter et al. (1994) recommend considering several priors, in order to represent the broadest possible audience:

- **Skeptical Prior**
 - One that believes the treatment is likely no better than control (as might be believed by a regulatory agency)
 - Perhaps obtained by taking mean 0 and setting $P(\beta_1 > \beta_S) = \epsilon$; in our setting $\epsilon = .05$ delivers a $N(0, 0.03)$.
Community of priors

Spiegelhalter et al. (1994) recommend considering several priors, in order to represent the broadest possible audience:

- **Skeptical Prior**
 - One that believes the treatment is likely no better than control (as might be believed by a regulatory agency)
 - Perhaps obtained by taking mean 0 and setting
 \[P(\beta_1 > \beta_S) = \epsilon; \] in our setting \(\epsilon = .05 \) delivers a \(N(0, 0.03) \).

- **Enthusiastic (or Clinical) Prior**
Community of priors

Spiegelhalter et al. (1994) recommend considering several priors, in order to represent the broadest possible audience:

- **Skeptical Prior**
 - One that believes the treatment is likely no better than control (as might be believed by a regulatory agency)
 - Perhaps obtained by taking mean 0 and setting $P(\beta_1 > \beta_S) = \epsilon$; in our setting $\epsilon = .05$ delivers a $N(0, 0.03)$.

- **Enthusiastic (or Clinical) Prior**
 - One that believes the treatment will succeed (typical of the clinicians running the trial)
Community of priors

Spiegelhalter et al. (1994) recommend considering several priors, in order to represent the broadest possible audience:

- **Skeptical Prior**
 - One that believes the treatment is likely no better than control (as might be believed by a regulatory agency)
 - Perhaps obtained by taking mean 0 and setting $P(\beta_1 > \beta_S) = \epsilon$; in our setting $\epsilon = .05$ delivers a $N(0, 0.03)$.

- **Enthusiastic (or Clinical) Prior**
 - One that believes the treatment will succeed (typical of the clinicians running the trial)
 - Perhaps obtained by taking mean β_S and the same variance as the skeptical prior; in our setting this delivers a $N(0.28, 0.03)$.

Chapter 6: Bayesian Design, with Application to Clinical Trials – p. 19/30
Community of priors (cont’d)

Reference (or Noninformative) Prior
Community of priors (cont’d)

- Reference (or Noninformative) Prior
 - One that expresses no particular opinion about the treatment’s merit
Community of priors (cont’d)

- **Reference (or Noninformative) Prior**
 - One that expresses no particular opinion about the treatment’s merit
 - Often a *improper uniform* (“flat”) prior is permissible
Community of priors (cont’d)

Reference (or Noninformative) Prior

- One that expresses no particular opinion about the treatment’s merit
- Often a improper uniform ("flat") prior is permissible

Note it may be sensible to match the prior to the decision one hopes to reach; the prior should represent “an adversary who will need to be disillusioned by the data to stop further experimentation”. Thus:
Community of priors (cont’d)

Reference (or Noninformative) Prior

- One that expresses no particular opinion about the treatment’s merit
- Often a improper uniform ("flat") prior is permissible

Note it may be sensible to match the prior to the decision one hopes to reach; the prior should represent “an adversary who will need to be disillusioned by the data to stop further experimentation”. Thus:

- To conclude a treatment difference, use the skeptical prior
Community of priors (cont’d)

- Reference (or Noninformative) Prior
 - One that expresses no particular opinion about the treatment’s merit
 - Often a improper uniform (“flat”) prior is permissible

Note it may be sensible to match the prior to the decision one hopes to reach; the prior should represent “an adversary who will need to be disillusioned by the data to stop further experimentation”. Thus:

- To conclude a treatment difference, use the skeptical prior
- To conclude no difference, use the enthusiastic prior
Monitoring plots: full posteriors

Posterior distributions; Covariate = Baseline CD4 Count
Monitoring dates = (1/15/91, 7/31/91, 12/31/91, 3/30/92)

Chapter 6: Bayesian Design, with Application to Clinical Trials – p. 21/30
Monitoring plots: tail areas

Posterior monitoring plot for \(\beta_1 \); Covariate = Baseline CD4 Count

\(\text{(C = clinical posterior, L = likelihood, S = skeptical posterior)} \)

\begin{itemize}
 \item \(\text{a) } P(\beta_1 < \log(.75) \mid R) \)
 \item \(\text{b) } P(\beta_1 > 0 \mid R) \)
\end{itemize}

Calendar date (cumulative # of events)

Probability

Chapter 6: Bayesian Design, with Application to Clinical Trials – p. 22/30
MCMC-based Bayesian design in BRugs

Within R, simulating the power or other operating characteristics in this setting works the same as before:

- Sample “true” β values from an assumed “true prior” (skeptical, enthusiastic, or in between)
MCMC-based Bayesian design in BRugs

Within \(\mathbb{R} \), simulating the power or other operating characteristics in this setting works the same as before:

- Sample “true” \(\beta \) values from an assumed “true prior” (skeptical, enthusiastic, or in between)
- Given these, sample fake survival times \(t_i \) (say, \(N \) from each study group) from the Weibull
MCMC-based Bayesian design in BRugs

Within \(\mathbb{R} \), simulating the power or other operating characteristics in this setting works the same as before:

- Sample “true” \(\beta \) values from an assumed “true prior” (skeptical, enthusiastic, or in between)

- Given these, sample fake survival times \(t_i \) (say, \(N \) from each study group) from the Weibull

- We may also wish to sample fake censoring times \(c_i \) from a particular distribution (e.g., a normal truncated below 0); for all \(i \) such that \(t_i > c_i \), replace \(t_i \) by “NA"
MCMC-based Bayesian design in BRugs

Within \(\mathbb{R} \), simulating the power or other operating characteristics in this setting works the same as before:

- Sample “true” \(\beta \) values from an assumed “true prior” (skeptical, enthusiastic, or in between)

- Given these, sample fake survival times \(t_i \) (say, \(N \) from each study group) from the Weibull

- We may also wish to sample fake censoring times \(c_i \) from a particular distribution (e.g., a normal truncated below 0); for all \(i \) such that \(t_i > c_i \), replace \(t_i \) by “NA"

- Compute \((\beta_L, \beta_U)\) using BRugs commands within \(\mathbb{R} \)
MCMC-based Bayesian design in BRugs

Within R, simulating the power or other operating characteristics in this setting works the same as before:

- Sample “true” β values from an assumed “true prior” (skeptical, enthusiastic, or in between)

- Given these, sample fake survival times t_i (say, N from each study group) from the Weibull

- We may also wish to sample fake censoring times c_i from a particular distribution (e.g., a normal truncated below 0); for all i such that $t_i > c_i$, replace t_i by “NA”

- Compute (β_L, β_U) using BRugs commands within R

- Determine the simulated trial’s outcome based on location of (β_L, β_U) relative to the indifference zone
MCMC-based Bayesian design in BRugs

Within R, simulating the power or other operating characteristics in this setting works the same as before:

- Sample “true” \(\beta \) values from an assumed “true prior” (skeptical, enthusiastic, or in between)
- Given these, sample fake survival times \(t_i \) (say, \(N \) from each study group) from the Weibull
- We may also wish to sample fake censoring times \(c_i \) from a particular distribution (e.g., a normal truncated below 0); for all \(i \) such that \(t_i > c_i \), replace \(t_i \) by “NA”
- Compute \((\beta_L, \beta_U)\) using BRugs commands within R
- Determine the simulated trial’s outcome based on location of \((\beta_L, \beta_U)\) relative to the indifference zone
- Repeat this process \(N_{rep} \) times; report empirical frequencies of the six possible outcomes
Bayesian power calculation in BRugs

We will likely wish to repeat the entire process for several sample sizes N and several priors.

- A Bayesian power calculation here might arise from using the enthusiastic prior as the “truth”
Bayesian power calculation in BRugs

We will likely wish to repeat the entire process for several sample sizes N and several priors.

A Bayesian power calculation here might arise from using the enthusiastic prior as the “truth”

For $N_{rep} = 1000$ (and using 100 burn-in and 1000 production MCMC iterations in each BRugs call), we obtained the following probabilities of rejecting the control when the enthusiastic prior is true:

<table>
<thead>
<tr>
<th>N</th>
<th>Skeptical</th>
<th>Reference</th>
<th>Enthusiastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.014</td>
<td>0.207</td>
<td>0.475</td>
</tr>
<tr>
<td>50</td>
<td>0.087</td>
<td>0.352</td>
<td>0.615</td>
</tr>
<tr>
<td>75</td>
<td>0.191</td>
<td>0.378</td>
<td>0.652</td>
</tr>
<tr>
<td>100</td>
<td>0.288</td>
<td>0.472</td>
<td>0.682</td>
</tr>
</tbody>
</table>

Power increases with N and/or prior enthusiasm!
Type I error rate calculation

A Bayesian version of this calculation would arise similar to the method of the previous slide, but now assuming the skeptical prior is true.
Type I error rate calculation

- A Bayesian version of this calculation would arise similar to the method of the previous slide, but now assuming the *skeptical* prior is true.

- A true frequentist Type I error calculation is also possible: simply *fix* $\beta_1 = 0$, and generate *only* the t_i and c_i for each of the N_{rep} iterations.
Type I error rate calculation

A Bayesian version of this calculation would arise similar to the method of the previous slide, but now assuming the skeptical prior is true.

A true frequentist Type I error calculation is also possible: simply fix $\beta_1 = 0$, and generate only the t_i and c_i for each of the N_{rep} iterations.

Note that while Bayesians are free to look at their data at any time without affecting the inference, multiple looks will alter the frequentist Type I error behavior of the procedure. If this is of interest, the algorithm must be modified to explicitly include these multiple looks, checking for early stopping after each look.
Type I error rate calculation

- A Bayesian version of this calculation would arise similar to the method of the previous slide, but now assuming the *skeptical* prior is true.

- A true frequentist Type I error calculation is also possible: simply fix $\beta_1 = 0$, and generate only the t_i and c_i for each of the N_{rep} iterations.

- Note that while Bayesians are free to look at their data at any time without affecting the inference, multiple looks will alter the frequentist Type I error behavior of the procedure. If this is of interest, the algorithm must be modified to explicitly include these multiple looks, checking for early stopping after each look.

- Early stopping for futility based on *predictive distributions* (“Bayesian stochastic curtailment”) may also be of interest – see Berry and Berry (2004)!
Example: Weibull model in BRugs

BRugs is a suite of R routines written by WinBUGS head programmer Andrew Thomas for calling OpenBUGS from R; see mathstat.helsinki.fi/openbugs/
Example: Weibull model in BRugs

BRugs is a suite of R routines written by WinBUGS head programmer Andrew Thomas for calling OpenBUGS from R; see mathstat.helsinki.fi/openbugs/

Given web access, BRugs may be installed directly within R: Packages – Install package(s) – CRAN mirror – BRugs – easy!
Example: Weibull model in BRugs

BRugs is a suite of R routines written by WinBUGS head programmer Andrew Thomas for calling OpenBUGS from R; see mathstat.helsinki.fi/openbugs/

Given web access, BRugs may be installed directly within R: Packages – Install package(s) – CRAN mirror – BRugs – easy!

The R program www.biostat.umn.edu/~brad/software/BRugs/Power.BRugs sources in the BRugs commands, generates the fake β and data values, calls OpenBUGS to compute (β_L, β_U)
Example: Weibull model in BRugs

- BRugs is a suite of R routines written by WinBUGS head programmer Andrew Thomas for calling OpenBUGS from R; see mathstat.helsinki.fi/openbugs/

- Given web access, BRugs may be installed directly within R: Packages – Install package(s) – CRAN mirror – BRugs – easy!

- The R program
 www.biostat.umn.edu/~brad/software/BRugs/Power.BRugs
 sources in the BRugs commands, generates the fake β and data values, calls OpenBUGS to compute (β_L, β_U)

- The OpenBUGS program
 www.biostat.umn.edu/~brad/software/BRugs/refmodel.txt
 passes the Weibull model and flat prior to OpenBUGS; data and inits files are also passed after creation in R
Power.BRugs (R code)

for (i in 1:nrep) { # outer data simulation loop

[Sample true parameters;
sample fake data (survival and censoring times) given parameters]

mydata <- pairlist(t = T, t.cens = T.cens, x = X, n = 2*N)
dput(mydata, "C:/joe/Pow erCalcs/powerdata.txt")

modelCheck("C:/joe/Pow erCalcs/refmodel.txt")
modelData("C:/joe/Pow erCalcs/powerdata.txt")
modelCompile()
modelInits("C:/joe/Pow erCalcs/powerinits.txt")
modelGenInits()

modelUpdate(100)
samplesSet("beta1")
dicSet()
modelUpdate(1000)
samplesAutoC("beta1", chain=1)
dicStats()
samplesDensity("beta1")
Power.BRugs (R code, cont’d)

LL <- samplesStats("beta1")$val2.5pc
UL <- samplesStats("beta1")$val97.5pc

if (UL < 0) acccontrol <- acccontrol + 1
 else
if (LL > hypbeta1) acctrt <- acctrt + 1
 else
if (UL < hypbeta1) & (LL > 0) equiv <- equiv + 1
 else
if (UL < hypbeta1) & (LL < 0) rejrtt <- rejrtt + 1
 else
if (UL > hypbeta1) & (LL > 0) rejcontrol <- rejcontrol + 1
 else
nodec <- nodec + 1

Bind the summary statistics of the current iteration to betalstat:
betalstat <- rbind(betalstat, stats(betal))

) # end of outer data simulation loop

[Write simulated power summaries to the screen]
refmodel.txt (BUGS code)

model {

for (i in 1:n) {
 t[i] ~ dweib(2, mu[i]) I(t.cens[i],)
 mu[i] <- exp(-beta0 - beta1*x[i])
}

beta0 ~ dnorm(7.53, 25)
betal ~ dnorm(0,.0001) #non-informative

}
Results

Assuming:
- Weibull shape \(r = 2 \), and \(N = 50 \) in each group
- median survival of 36 days with 50% improvement in the treatment group
- a \(N(80, 20) \) censoring distribution
- the enthusiastic prior as the “truth”

We obtain the following output from \(N_{\text{rep}} = 100 \) reps:
Results

Assuming:
- Weibull shape $r = 2$, and $N = 50$ in each group
- median survival of 36 days with 50% improvement in the treatment group
- a $N(80, 20)$ censoring distribution
- the enthusiastic prior as the “truth”

We obtain the following output from $N_{rep} = 100$ reps:

Here are simulated outcome frequencies for $N = 50$

- accept control: 0
- reject treatment: 0.07
- equivalence: 0
- reject control: 0.87
- accept treatment: 0.06
- no decision: 0

End of BRugs power simulation