PH7430 Statistical Methods for Correlated Data - Fall 2009
General Linear Models (GLMs)

Kyle D. Rudser

October 8, 2009
A. General Linear Models (GLMs)
Recall the usual regression model

\[Y_i = X_i \beta + \varepsilon_i \quad i = 1, \ldots, n \]

\[\varepsilon_i \sim F(0, \sigma^2) \quad \text{independent} \]

where \(Y_i \) is the one outcome measure from each of \(n \) individuals.

- For correlated data, \(Y_i \) is a vector of observations, containing all \(J \) observations taken on cluster \(i \) from each of \(n \) clusters.
- What pieces of the usual regression model need to change to accommodate the correlation in the data?
We’ve already seen that for longitudinal and cluster correlated data:

\[
\text{Var}[Y_i] = \text{Var} \begin{bmatrix}
Y_{i1} \\
Y_{i2} \\
\vdots \\
Y_{iJ}
\end{bmatrix}
\]

\[
\Sigma_i =
\]

so that: \(\text{Cov}[Y_{ij}, Y_{i\ell}] = \sigma_{j\ell} \, \forall \, i \)

and: \(\text{Var}[Y_{ij}] = \sigma_j^2 \, \forall \, i \)

We will now let \(\Sigma_i \) denote \(\text{Var}[Y_i] \).
It follows that:

\[
\text{Var}[\varepsilon_i] = \text{Var} \begin{bmatrix}
\varepsilon_{i1} \\
\varepsilon_{i2} \\
\vdots \\
\varepsilon_{iJ}
\end{bmatrix} = \Sigma_i
\]

Why?
Consider the variance of our model: \(Y_i = X_i\alpha + \varepsilon_i \)
Thus:

\(\varepsilon_i \sim F(0, \Sigma_i) \quad i = 1, 2, \ldots n. \)

Note (on the previous page) that there are no \(i \) subscripts in the elements of \(\Sigma_i \) anywhere. (This assumption can be relaxed.) What does that mean?
Putting this all together, we can now write down a General Linear Model for cluster i:

$$Y_i = X_i \alpha + \varepsilon_i \quad i = 1, \ldots, n$$

$$\varepsilon_i \sim F(0, \Sigma_i)$$

or, written equivalently,

$$Y_i \sim F(X_i \alpha, \Sigma_i)$$

for all i.

Note: Repeated Measures ANOVA is a special case of a GLM. It is a GLM with a group, time, and group by time structure in X_i and with Σ_i having a compound symmetry structure.
Clearly we now have to specify two things before we can fit any models:

1. a structure for Σ_i (SAS calls it R)
2. a form for $X_i\alpha$.

What structures can Σ_i take? Let’s look at examples assuming $J = 4$ like for the Contact Time Study:

INDEPENDENT with equal variances and zero correlations

\[
\Sigma_i = \begin{bmatrix}
\sigma^2 & 0 & 0 & 0 \\
0 & \sigma^2 & 0 & 0 \\
0 & 0 & \sigma^2 & 0 \\
0 & 0 & 0 & \sigma^2 \\
\end{bmatrix} = \sigma^2 I
\]
COMPOUND SYMMETRY [exchangeable, equicorrelation] with equal variances and constant correlations for every lag

\[
\Sigma_i = \tau^2 \begin{bmatrix}
1 & 1 \\
\rho & 1 \\
\rho & \rho & 1 \\
\rho & \rho & \rho & 1
\end{bmatrix}
\]

FIRST ORDER AUTOREGRESSIVE [ar(1)] with equal variances, constant correlations within lag, and decaying correlations across lags

\[
\Sigma_i = \tau^2 \begin{bmatrix}
1 & 1 \\
\rho^2 & 1 \\
\rho^3 & \rho^2 & 1 \\
\rho^3 & \rho^2 & \rho & 1
\end{bmatrix}
\]
BANDED MAIN DIAGONAL (more general than Weiss considers) with one band:

\[\Sigma_i = \begin{bmatrix} \sigma_{11} & 0 & 0 & \sigma_{44} \\ 0 & \sigma_{22} & 0 & 0 \\ 0 & 0 & \sigma_{33} & 0 \\ 0 & 0 & 0 & \sigma_{44} \end{bmatrix} \]

with two bands:

\[\Sigma_i = \begin{bmatrix} \sigma_{11} & \sigma_{21} & \sigma_{22} & 0 \\ \sigma_{21} & \sigma_{22} & \sigma_{32} & \sigma_{33} \\ 0 & \sigma_{32} & \sigma_{33} & 0 \\ 0 & 0 & \sigma_{43} & \sigma_{44} \end{bmatrix} \]

both with unequal variances and with covariances for a limited number of lags only.
TOEPLITZ with equal variances and constant correlations within lag

\[\Sigma_i = \tau^2 \begin{bmatrix} 1 & \rho_1 & 1 \\ \rho_2 & \rho_1 & 1 \\ \rho_3 & \rho_2 & \rho_1 & 1 \end{bmatrix} \]

UNSTRUCTURED

\[\Sigma_i = \begin{bmatrix} \sigma_{11} & \sigma_{21} & \sigma_{31} & \sigma_{41} \\ \sigma_{21} & \sigma_{22} & \sigma_{32} & \sigma_{42} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} \]
How do we choose a structure?

- consider several structures which seem reasonable according to the science
- examine covariance EDA plots
- fit a model separately for each structure and compare.

Always keep in mind, which structures make sense for longitudinal data:

- with equally spaced time points?
- with unequally spaced time points?

and which structures make sense for non-longitudinal, cluster correlated data?
Aside: How do we get from the covariance matrix to the correlation matrix?
Recall the basic formula for calculating a correlation between two random variables Z_1 and Z_2:

$$\text{Corr}[Z_1, Z_2] = \frac{\text{Cov}[Z_1, Z_2]}{\sqrt{\text{Var}[Z_1] \text{Var}[Z_2]}}$$

which implies that

$$\text{Cov}[Z_1, Z_2] = \sqrt{\text{Var}[Z_1] \text{Corr}[Z_1, Z_2] \sqrt{\text{Var}[Z_2]}}$$

so now we just need to translate this into matrix terms.
\[\text{Var}[\varepsilon_i] = \Sigma_i = \]

\[
\begin{bmatrix}
\sqrt{\sigma_{11}} & \sqrt{\sigma_{22}} & \ldots & \sqrt{\sigma_{11}} \\
\sqrt{\sigma_{22}} & \ldots & \sqrt{\sigma_{22}} & \sqrt{\sigma_{11}} \\
\vdots & \ddots & \vdots & \vdots \\
\sqrt{\sigma_{JJ}} & \ldots & \sqrt{\sigma_{JJ}} & \sqrt{\sigma_{JJ}}
\end{bmatrix}
\begin{bmatrix}
\text{Corr}[\varepsilon_{i2}, \varepsilon_{i1}] & 1 \\
\vdots & \ddots & \vdots \\
\text{Corr}[\varepsilon_{iJ}, \varepsilon_{i1}] & \ldots & 1 \\
1 & \ldots & 1
\end{bmatrix}
\begin{bmatrix}
\sqrt{\sigma_{11}} & \sqrt{\sigma_{22}} & \ldots & \sqrt{\sigma_{11}} \\
\sqrt{\sigma_{22}} & \ldots & \sqrt{\sigma_{22}} & \sqrt{\sigma_{11}} \\
\vdots & \ddots & \vdots & \vdots \\
\sqrt{\sigma_{JJ}} & \ldots & \sqrt{\sigma_{JJ}} & \sqrt{\sigma_{JJ}}
\end{bmatrix}
\]

standard deviations correlations standard deviations

As long as you have an intuitive understanding of what a correlation means, then don't worry about these formulas. Just remember that a correlation is a covariance that has been re-scaled by the variances.
How do we next incorporate the idea that clusters are independent of each other? Let’s consider all data for all clusters, all together, with $Var[Y_i] = \Sigma_i$:

\[
Var[Y] = Var\begin{bmatrix}
 Y_1 \\
 Y_2 \\
 \vdots \\
 Y_n
\end{bmatrix} = \\
\begin{bmatrix}
 Var[Y_1] & Cov[Y_2, Y_1] & Var[Y_2] \\
 Cov[Y_2, Y_1] & Var[Y_2] & \ldots \\
 \vdots & \vdots & \ddots \\
 Cov[Y_n, Y_1] & Cov[Y_n, Y_2] & \ldots & Var[Y_n]
\end{bmatrix}
\]
\[
\begin{bmatrix}
\text{Var}[Y_1] \\
0 & \text{Var}[Y_2] \\
\vdots & \vdots & \ddots \\
0 & 0 & \cdots & \text{Var}[Y_n]
\end{bmatrix}
\]

\[
\begin{bmatrix}
\Sigma_1 & 0 & \cdots & 0 \\
0 & \Sigma_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \Sigma_n
\end{bmatrix}
\]

- \(\varepsilon_i \sim F(0, \Sigma_i) \) for \(i = 1, \ldots, n \)
- this last matrix is “block-diagonal”
The full model structure is thus:

\[Y = X\alpha + \varepsilon \quad \text{with} \]

\[\varepsilon \sim F\left(0, \begin{bmatrix} \Sigma_1 & 0 & \cdots & 0 \\ 0 & \Sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Sigma_n \end{bmatrix} \right) \]
or, written equivalently,

\[
Y \sim F \left(X_\alpha, \begin{bmatrix} \Sigma_1 & 0 & \cdots & 0 \\ 0 & \Sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Sigma_n \end{bmatrix} \right).
\]

\(\Sigma\) is said to have a \textit{block diagonal} structure with each \(\Sigma_i\) as a ‘block’ lined up along the diagonal.