Components in α can be tested just like we did for GLMs:

\[
t^* = \frac{B'\hat{\alpha}}{\sqrt{B'(X'\hat{\Sigma}X)^{-1}B}}
\]

\[
F^* = \frac{(B'\hat{\alpha})' [B'(X'\hat{\Sigma}X)^{-1}B]^{-1} (B'\hat{\alpha})}{\text{rank}(B)}
\]

where B is defined as before: a vector or matrix of contrast coefficients that indicate which components of α are tested.

For T^*, full and reduced models must be nested and must have the same random effects structure and Σ structure. The degrees of freedom are computed as:

\[
r = (#\text{parameters in full model's } \alpha) - (#\text{ parameters in reduced model's } \alpha).
\]

As before, All these tests are approximate and the test gets better as n gets larger (where n refers to the # of subjects or clusters).

- Degrees of freedom for the t^* and F^* must be estimated. Use the SAS defaults. For mixed models (i.e., when a RANDOM statement is used), the default degrees of freedom method is DDFM = CONTAIN.
- Use REML for t^* and F^*.
- Use ML for T^*.
- AIC or BIC can be used as before for informal comparisons.

Very Long Aside: F- and t-test degrees of freedom
SAS has five possibilities for the denominator degrees of freedom (DDFM) for the F-test and t-test:

MODEL ... / DDFM= CONTAIN ...;
BETWITHIN
RESIDUAL
SATTERTH
KENWARDROGER

- DDFM=CONTAIN is the default when a RANDOM statement is present.
- DDFM=BETWITHIN is the default when only a REPEATED statement is present.
- Thus when both are present, DDFM=CONTAIN is the default.
DDFM = CONTAIN
What does SAS mean by "containment?" A fixed effect (e.g., gender, treatment, etc.) is contained
- in any terms which are interactions with that effect,
- in any terms which are nested within that effect,
- in itself.
SAS checks the RANDOM statement to see if it finds any terms which contain the fixed effect being tested.

Example: random intercept
PROC MIXED;
 CLASS female;
 MODEL Y = female age female*age;
 RANDOM int / SUB = child;
The fixed intercept is contained within the random intercept. SAS computes the "rank contribution" of the random intercept to the matrix \([X \ Z]\) and assigns that as the degrees of freedom for the fixed intercept.
- The other fixed effects (female, age) are given degrees of freedom \(N - \text{rank}[X \ Z]\), the "residual" degrees of freedom, where \(N = \text{total \# observations}\).
- the interaction female*age gets (df female)*(df age), as in regression.

Example: random intercept and slope
PROC MIXED;
 CLASS female;
 MODEL Y = female age female * age;
 RANDOM int age / SUB = child;
The fixed intercept is contained within the random intercept.
- The fixed slope term age is contained within the random slope term age.
SAS then computes the "rank contribution" of each of the random intercept and random age to the matrix \([X \ Z]\).
- the fixed intercept and fixed age are assigned the smaller of the two as the degrees of freedom
- female*age interaction gets (df female)*(df age), just as in regression

Example: random intercept and slope
PROC MIXED;
 CLASS female;
 MODEL Y = female age female*age;
 RANDOM int age / SUB = child;
The fixed intercept is contained within the random intercept. SAS computes the "rank contribution" of the random intercept to the matrix \([X \ Z]\) and assigns that as the degrees of freedom for the fixed intercept.
- The other fixed effects (female, age) are given degrees of freedom \(N - \text{rank}[X \ Z]\), the "residual" degrees of freedom, where \(N = \text{total \# observations}\).
- the interaction female*age gets (df female)*(df age), as in regression.

DDFM=BETWITHIN
When only a REPEATED statement is present, the residual degrees of freedom are divided into “between-subject” and "within-subject".
- PROC MIXED then checks to see if the fixed effect being tested changes within any subject.
Example
PROC MIXED;
 CLASS gender ctrial;
 MODEL contact = age gender trial;
 REPEATED ctrial/ SUB=subj TYPE = cs;
Trial changes within subject, but gender does not.
- Denominator degrees of freedom for terms which do change within subject are assigned to be the within-subject residual degrees of freedom.
- For terms which do not change within subject, SAS assigns the between subject degrees of freedom.
If there are multiple within-subject effects which are class variables, the within-subject residual degrees of freedom are partitioned into subject-by-effect interactions.

EXCEPTION: TYPE=UN
REPEATED trial / SUB = subj TYPE=UN;
In this case, all effects are assigned the between-subject degrees of freedom to provide better small sample approximations.

DDFM=RESIDUAL
Residual degrees of freedom are assigned to all effects, \(N - \text{rank}[X \ Z] \), where \(N = \# \) observations total.

DDFM=SATTERTH
The Satterthwaite approximation is used in two-sample \(t \)-tests with unknown variances which are not pooled:

\[
\begin{align*}
 t &= \frac{\bar{y}_1 - \bar{y}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \\
 df &= \frac{\frac{1}{n_1} \left(\frac{s_1^2}{n_1} \right)^2 + \frac{1}{n_2} \left(\frac{s_2^2}{n_2} \right)^2}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1} \right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2} \right)^2}
\end{align*}
\]

There is a generalization of this for fixed effects \(F \)-tests. See the SAS documentation of PROC MIXED for details.

DDFM=KENWARDROGER
The variance/covariance matrix of the vector \(\alpha \) is inflated, and then a Satterthwaite approximation is applied.

This is the most important thing to remember about degrees of freedom:
IF ALL THE DENOMINATOR DEGREES OF FREEDOM IN YOUR F-TESTS ARE BIGGER THAN \(\sim 25 \) (no matter what your covariance structure is or which DF option is used) THEN IT DOES NOT REALLY MATTER WHICH DF OPTION IS USED.

TESTING \(\beta_i \)
Do we really want to test \(\beta_i \)?

Consider the Orthodontic Study:

\[
Y_i = X_i \alpha + \beta_{i1} + \beta_{i2} \cdot \text{age} + \delta_i
\]

\[
\begin{bmatrix}
\beta_{i1} \\
\beta_{i2}
\end{bmatrix}
\sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, D = \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix} \right)
\]

What do we want to test to decide whether, e.g., the random slopes are needed?
Test a model with random intercept and random slope vs. a model with random intercept only

\[H_0 : D_{22} = 0 & D_{21} = 0 \]

if \(D_{22} = 0 \) then \(\beta_{22} \sim N(0,0) \)

TESTING Σ

Remember that which random effects we include dictates what structure \(Σ \) will take. When comparing two structures to each other:
you **MUST** understand whether going from your full (more complex) to your reduced (simpler) model involves testing whether a variance (on the diagonal of \(Σ \) or \(D \) or \(R_i \)) is equal to 0.

IF SO, LIKELIHOOD RATIO TESTS CANNOT BE CARRIED OUT AS BEFORE.

IF NOT, we use the same likelihood ratio test as for GLMs:

\[T^* = \left(\text{Reduced model} \right) -2 \log \text{likelihood} - \left(\text{Full model} \right) -2 \log \text{likelihood} \]

The degrees of freedom are computed as

\[r = (\# \text{parameters in full model}'s Σ) - (\# \text{parameters in reduced model}'s Σ) \]

and \(T^* \) is compared to a \(χ^2 \).

As for GLMs this must be done with REML and your full and reduced models must be nested. Lastly, you must have the same \(X_α \) (MODEL statement) in both the full and reduced models.

IF YOU DO NEED TO TEST WHETHER A VARIANCE IS 0, determine whether the test you are trying to do is one of the following special cases:

SPECIAL CASE #1 Testing one random effect (full model) vs. no random effect (reduced model)

Full Model: \(Y_{ij} = X_{ij}α + β_{i1} + δ_{ij} \)

\(β_{i1} \sim N(0,D) \)

\(δ_{ij} \sim N(0,σ^2) \)

Reduced Model: \(Y_{ij} = X_{ij}α + δ_{i} \)

\(δ_{i} \sim N(0,σ^2) \)

This is really a test of \(H_0 : D = 0 \) vs. \(H_a : D > 0 \)

For this case, \(T^* \sim χ^2 \) as you might expect.
How do we carry out this test?

- Compute T^* as before.
- Get a p-value from comparing T^* to a χ^2.
- Cut the p-value in half. This is the appropriate p-value for the test.

SPECIAL CASE #2 Testing two random effects (full model) vs. one random effect (reduced model)

EXAMPLE

Full Model: $Y_{ij} = X_j\alpha + \beta_{1j} + \beta_{2j} \cdot \text{time} + \delta_{ij}$

\[
\begin{bmatrix}
\beta_{1j} \\
\beta_{2j}
\end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, D = \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix} \right)
\]

$\delta_{ij} \sim N(0, \sigma^2)$

Reduced Model: $Y_{ij} = X_j\alpha + \beta_{1j} + \delta_{ij}$

$\beta_{1j} \sim N(0, D)$

$\delta_{ij} \sim N(0, \sigma^2)$

This is a test of

$H_0: D_{22} = 0$ and $D_{12} = 0$

$H_a: D_{22} > 0$

For this case, $T^* \approx \frac{1}{2} \chi^2_1 + \frac{1}{2} \chi^2_2$.

There are no tables for the distribution of this mixture $\chi^2_1 + \chi^2_2$.

Option 1: Compare T^* to a χ^2_1. This will always be conservative, i.e. the p-value will be too big (less significant).

Option 2: Simulate your own table value for $\frac{1}{2} \chi^2_1 + \frac{1}{2} \chi^2_2$. Compare it to your T^*. See the R program on the class R-plotting web page.

Option 3: Use AIC or BIC to compare.

SPECIAL CASE #3 Testing $q + l$ random effects (full model) vs. q random effects (reduced model)

EXAMPLE $q = 2$ and $l = 1$

Full Model:

\[
\begin{bmatrix}
\beta_{1j} \\
\beta_{2j} \\
\beta_{1l}
\end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, D = \begin{bmatrix} D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33} \end{bmatrix} \right)
\]

$\delta_{ij} \sim N(0, \sigma^2)$

Reduced Model:

\[
\begin{bmatrix}
\beta_{1j} \\
\beta_{2j} \\
\beta_{1l}
\end{bmatrix} \sim N\left(\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, D = \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix} \right)
\]

$\delta_{ij} \sim N(0, \sigma^2)$

This is a test of

$H_0: D_{13} = 0$ with constraint $D_{32} = D_{31} = 0$

$H_a: D_{13} > 0$

For this case, $T^* \approx \frac{1}{2} \chi^2_q + \frac{1}{2} \chi^2_{q+1}$.

There are no tables for this distribution.

Option 1: Compare T^* to a χ^2_{q+1}. This will always be conservative (p-value will be too big).

Option 2: Simulate your own table value. Replace the $df = 1$ and $df = 2$ with $df = q$ and $df = q + 1$ for your q.

This is a test of

$H_0: D_{32} = 0$ and $D_{31} = 0$

$H_a: D_{32} > 0$

For this case, $T^* \approx \frac{1}{2} \chi^2_1 + \frac{1}{2} \chi^2_{q+1}$.

There are no tables for the distribution of this mixture $\chi^2_1 + \chi^2_{q+1}$.

Option 1: Compare T^* to a χ^2_{q+1}. This will always be conservative (p-value will be too big).

Option 2: Simulate your own table value. Replace the $df = 1$ and $df = 2$ with $df = q$ and $df = q + 1$ for your q.

This is a test of

$H_0: D_{32} = 0$ and $D_{31} = 0$

$H_a: D_{32} > 0$
As always, use REML when computing T^* for all of these cases.

- If the test you are trying to do is not a standard LRT and is not one of the special cases, then there is no formal statistical test. You can compare AIC and BIC values instead.
- You can always use AIC and BIC to compare non-nested models.

EXAMPLE

Model #1 is GLM with Toeplitz.
Model #2 is GLMM with random intercept and slope.
Take the model with the smaller AIC or BIC.

Dr. Eberly words of warning regarding these tests:

- These tests for the special cases are based on many layers of approximations. In practice this means that I will use a more complex covariance structure only if it is strongly significantly different than a less complex covariance structure.
- These tests also were derived assuming $R_i = \sigma^2 I$. Later we will learn about models where R_i has e.g. an AR(1) structure. In such cases, these tests for the special cases may not be appropriate, and you should rely on standard LRTs or AIC or BIC.

Words of encouragement:

- The modeling process is the same as it was for GLMs.
- Don’t worry too much if your n is reasonably large ($n \geq 100$).

AN OVERALL MODEL BUILDING STRATEGY

- Create summary statistics and EDA plots to explore the mean structure.
- Decide upon a reasonable starting (full) model for X_α. It is best to start with a large model, so that covariance structures can be compared with all reasonable covariates already taken into account (included in X_α).
- Create summary statistics and EDA plots to explore the variance/covariance structure.
- Decide upon several reasonable covariance structures to consider. They could be from either GLMs or GLMMs or both.
- Fit one model for each covariance structure using REML and the same full model for X_α in each. Compare the models using LRTs (if possible), AIC, or BIC to determine the best structure.
- Refit the model with the chosen covariance structure and the full model for X_α using ML. For model reduction, use ML if you will be using LRTs or REML if you will be using t-tests or F-tests.
- Reduce the full model for X_α to the most parsimonious model appropriate for the scientific questions. Compare nested model with LRTs (using ML), F-tests (using REML), or t-tests (using REML). It will likely take several stepwise reductions to get to a final model (just like in regression).
- Compare your full model for X_α to your final model for X_α using ML and a LRT.
 - If they are not significantly different, re-fit your final model with REML.
 - If they are, then likely there is collinearity or confounding among the covariates. Reconsider your stepwise reductions.
- Carry out model diagnostics.